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I

Abstract

This thesis explores the suitability of physics-aware neural networks for power quality

state estimation in distribution grids. For that, power quality data was generated in a

simulated environment and used for training and evaluation of di�erent neural network

models. Comprehensive data analyses were carried out, focusing on optimal representa-

tions and processing of power quality data for neural network applications. Comparative

assessments with traditional fully connected architectures demonstrated the superior capa-

bilities of physics-aware models, which utilize the physical grid structure as a regularization

mechanism. Despite increased computational complexity, e�ective methods were identi�ed

to address challenges posed by deep architectures and sparse connectivity. Best performing

models achieved a mean squared error loss of 4× 10−6, signi�cantly outperforming tradi-

tional models with a loss of 1.1 × 10−5. The results strongly indicate that physics-aware

neural networks are suitable for power quality state estimation tasks. Promising avenues

for expanding developed models include incorporation of physical laws in the learning

process, potentially further constraining the network to physically possible states.
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1 Introduction

Power grids are currently undergoing a major change in both power production and con-

sumption. While in the past power production was conducted centralized in large power

plants such as coal and nuclear, nowadays, a shift towards decentralized production has be-

gun. Small-scale photovoltaic (PV) systems are being integrated into low voltage (LV) and

wind turbines into medium voltage (MV) distribution grids, while nuclear and coal plants

are decommissioned. At the same time, the ratio of power electronics with non-linear loads

is increasing with the prevalence of LED lights, computers and the proliferation of electric

vehicle supply equipment (EVSE).

A well-known challenge caused by this shift is matching power production to consumption

due to altered demand patterns such as charging of electric vehicles and the dependency

on weather for renewable energy production.

However, new challenges arise in terms of power quality (PQ), in�uencing the safe op-

eration of power grids. Here, deviations in voltage magnitude, in frequency and from a

perfect sinusoidal wave may cause failure of electrical equipment, reduce longevity of grid

components or reduce system e�ciency. Therefore, monitoring power quality throughout

the whole grid is crucial for a safe operation. However, installing measurement devices is

costly and not possible at all locations, especially in residential areas with underground

lines. Consequently, the demand for algorithms that are capable of calculating or estimat-

ing power quality at unmonitored nodes arises.

Several model-based algorithms exist that are typically un�t in cases of data scarceness

caused by low measurement penetration in the power grid. On the other hand, data-driven

algorithms make use of historical or simulated data to compensate for the lack of measure-

ments at operation time. This approach will be implemented in this work by using neural

networks to estimated voltages at unmonitored nodes.

At �rst, a deeper understanding of power quality data is developed. For this, section 2

details power quality including power quality errors, their causes, mathematical modelling

and regulations. Afterwards, section 3 deals with the technical foundations required for

this work. There, required knowledge of power grids, algorithms for state estimation,

power grid modelling tools and basics of machine learning are conveyed. In section 4 re-

lated work and existing methods for state estimation are described. Then, in section 5

a solution concept is developed tackling the previously described issues. Here, di�erent

representations of the complex voltages are evaluated to identify the optimal input form

for neural networks. Additionally, several neural network models are implemented and

evaluated. While a basic dense neural network model serves as the benchmark for perfor-

mance comparison, physics-aware neural networks are implemented that incorporate the

underlying power grid structure into the neural network structure. Moreover, models that

utilize physical laws are evaluated for their applicability to power quality issues. Finally,

the implemented models are improved in their ability to generalize and to deal with possi-

ble measurement noise. This section is followed by a portrayal of the implemented system

architecture of the simulation and physics-informed framework in section 6. Finally, the
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results are presented in section 7 and a summary and outlook on future work are provided

in section 8.1.

Out of scope is the development of complex-valued neural networks that require a full

rewrite of the basis of neural networks, and graph neural networks that were developed in

a di�erent thesis at the same time. Also, state estimation is performed based on frequency-

domain data. Because of that, some errors such as short-lived transients may not be fully

captured here.
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2 Power Quality

Power quality refers to the degree to which electrical power conforms to the desired charac-

teristics. Those include a sinusoidal wave form of voltage and current, a consistent voltage

and stable frequency. Maintaining a stable and consistent power grid is crucial for the save

operation of electrical equipment that is designed to function within speci�c voltage and

frequency limits. Electrical equipment critical to grid operations, such as transformers or

capacitors may experience reduced performance, overheating, or complete failure if sub-

jected to poor power quality. In the worst case, such incidents could escalate to system

outages. Simultaneously, customer devices, such as household appliances, EVSE, and in-

dustrial machines, are also susceptible to poor power quality conditions.

In this section, power quality disturbances, their causes, consequences and regulations are

described.

2.1 Power Quality Disturbances

In most parts of the world and also in this work's project the power grid is operated at

a frequency of 50Hz and the low-voltage (LV) distribution section works with a line-to-

neutral root-mean-square (RMS) value of 230V with RMS calculated as VRMS =
Vpeak√

2
.

Without disturbances, the voltage forms a perfect sine wave at the given frequency and

voltage amplitude. Any deviation from this perfect sine wave may be classi�ed as power

quality disturbance.

Disturbances can be caused by a variety of electrical equipment and system states. Large

power plants using turbines are closely monitored and controlled generally producing a

near-sinusoidal wave with consistent voltage and controllable frequency. On the other

hand, non-synchronous generators such as PV systems with inverters that operate in a

grid-following pattern may result in deviations from the desired frequency. In these types

of inverters, the voltage magnitude and phase angle of the power grid are tracked, and the

output is then synchronized. Non-linear loads such as LED lights, EVSE or computers

may cause harmonics. Additionally, lightning strikes and switching events can result in

transients.

Because of that, the power grid and electrical equipment is built with su�cient leeway

de�ned through norms and regulations.

2.1.1 Steady-State Frequency and Voltage Deviations

If the RMS value or the frequency in a steady state of the system, i.e. when they do not

change over time, di�er from the expected value, this is classi�ed as steady-state frequency

or voltage deviation. While most electronics are designed with margins such that minor

disturbances do not cause equipment failure, major disturbances may result in outages.

Typically, these margins are within the ±10% range for voltages and most equipment is

usually not e�ected heavily by frequency deviations [1]. However, regulations still exist

that de�ne frequency deviation limits as shown in table 1 separated into islanded and

grid-connected mode for low-voltage distribution grids.
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Grid-Connected Operation Islanded Operation

Minimum Maximum duration Minimum Maximum duration

49.5Hz 50.5Hz during
99.5% of the
year

49Hz 51Hz during 95%
of the week

47Hz 52Hz permanently 42.5Hz 57.5Hz permanently

Table 1 Maximum allowed frequency deviations. Adapted from [2, EN 50160]

2.1.2 Harmonics

In this work harmonic analysis is performed using neural networks. Therefore, it is

paramount to gain an understanding of what harmonics and their causes are. Harmonics

are described as sinusoidal waves at frequencies that are integer multiples of the funda-

mental frequency [1]. Figure 1 shows a sine wave at 50Hz with amplitude 1, one at 150Hz

with amplitude 0.3, a third at 250Hz with amplitude 0.2 and the waveform that results

from overlaying the former. On the bottom, the corresponding Fourier transform is shown.

Using Fourier transform, a time-domain signal can be converted into its constituent fre-

Figure 1 Overlay of sine waves at 50Hz, 150Hz and 250Hz. Source: own illustration

quencies. Hereby, a complex signal with multiple distortions can be simpli�ed by looking

at its spectral components. This method will be used multiple times throughout this work.

A single perfect sine wave consists solely of one component at its fundamental frequency. In

contrast, overlaying multiple sine waves generates a composite waveform with components

at each of their respective frequencies, each contributing to the mixed signal's spectrum
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with amplitudes corresponding to their original amplitudes.

In the case of a square wave as depicted in �gure 2 harmonics at all uneven multiples of

the fundamental frequency exist. This means that the signal consists of sine wave compo-

nents at exactly those frequencies. Finally, an unbalanced waveform that is unsymmetrical

Figure 2 Square waves are built from sine waves at uneven harmonics as shown in the FFT spec-
trum. Source: own illustration

across the y-axis as shown in �gure 3 results in even harmonics. In theory, the voltage wave

is not expected to be unbalanced and therefore even harmonics are expected to be lower

in amplitude than uneven harmonics. Additionally, interharmonics with components at

frequencies that aren't integer multiples of the fundamental frequency and subharmonics

with those frequency components below the fundamental frequency exist but will not be a

part of this work. Finally, superharmonics shall be mentioned as a term that is commonly

used for very high frequencies or overtones. Usually, harmonics make up most of the spec-

trum that builds the voltage wave and thus interharmonics, sub- and superharmonics play

an inferior role in state estimation.

Total harmonic distortion (THD) is commonly used to describe the overall percentage of

harmonics relative to the fundamental frequency. For that, the derivative of the sum of

the squared harmonics is calculated as shown in equation 1 where harmonics up to N are

considered and Vn is the RMS value of the n-th harmonic. Then, the result is divided by

the RMS value of the fundamental frequency.

THD =

√∑N
n=2(V

2
n )

V1
(1)
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Figure 3 FFT of an unbalanced waveform with even harmonics visible in the FFT spectrum.
Source: own illustration

A more detailed view on harmonics is presented in section 5.1.2 where harmonic spectra

are measured in a laboratory setting.

International standards govern the harmonic current emissions of electrical equipment,

with the International Electrotechnical Commission (IEC) issuing guidelines in the form

of the 61000 series. Speci�cally, parts 3-2 and 3-12 outline limits for harmonic current

emissions of equipment with input currents of ≤ 16A and > 16A, ≤ 75A per phase,

respectively [3] [4]. Concurrently, regulations exist for managing harmonic distortions

in the power grid. Within Europe, the European Committee for Standardization has

issued standards addressing voltage characteristics [2]. Table 2 gives the maximum allowed

harmonic distortions for harmonics up to the 25th harmonic. For harmonics above the 25th

and for interharmonics no limit is yet de�ned.

For three-phase AC systems, the phase angle of harmonics is calculated using equation 2

where n is the n-th harmonic, ϕ is the phase angle of the fundamental frequency and A,

B, C represent the phases.

ϕn,A = nϕ mod 360◦ (2a)

ϕn,B = n(ϕ− 120◦) mod 360◦ (2b)

ϕn,C = n(ϕ− 240◦) mod 360◦ (2c)

One can see that if n = 3 the displacement between phases, i.e. 120◦ for phase B and

240◦ for phase C becomes a multiple of 360◦. In �gure 4 the alignment of phase angles
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Figure 4 Harmonic phase alignment for harmonic at multiples of three of the fundamental fre-
quency; third harmonics in red. Source: own illustration
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Uneven harmonics Multiples of 3 Even harmonics

order relative

amplitude

order relative

amplitude

order relative

amplitude

5 6% 3 5% 2 2%

7 5% 9 1.5% 2 1%

11 3.5% 15 1.0% 6 to 24 0.5%

13 3% 21 0.75%

17 2%

19 1.5%

23 1.5%

25 1.5%

Table 2 Maximum allowed harmonic distortions at low voltage supply points as percentage of the
RMS value for fundamental frequency. Adapted from [2, EN 50160]

at multiples of three can be observed which is caused by phase displacement described in

equation 2. While at 50Hz all phases add up to zero, at 150Hz all phases align in phase

angle and add on top of each other.

2.1.3 E�ective Value Fluctuations

E�ective value �uctuations can be categorized into voltage sags and voltage swells. Here,

the voltage amplitude decreases or increases for multiple cycles. As shown in �gure 5

Figure 5 Voltage sag and associated FFT spectrum. Source: own illustration
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voltage sags can mostly be identi�ed through the altering amplitude, however, also cause

some form of harmonic distortion mostly in subharmonics and interharmonics due to the

altered wave shape. In the European norm [2, EN 50160] voltage sags and swells are

classi�ed based on increase or decrease in amplitude and duration of the sag or swell.

2.1.4 Transients

Transients are short disturbances that are caused by sudden changes in the power system

such as short-circuits. Firstly, impulsive transients are typically caused by events like light-

ning strikes. Typically, the e�ects of impulsive transients are very short-lived spikes with

a quick return to a steady state.

Secondly, oscillatory transients often occur due to the energizing or de-energizing of induc-

tive or capacitive loads, or due to switching operations like opening or closing of circuit

breakers. For these transients, oscillation occurs around a speci�c value and the e�ect

may last up to several cycles [5]. The spectral components of a transient depend on the

Figure 6 Simpli�ed model of an oscillatory decaying transient with a main frequency component
around 1 kHz with associated FFT on a logarithmic scale. Source: own illustration

transient source and may involve frequencies up to a few mega-Hertz [6]. A simpli�ed

mathematical model of an oscillatory transient with a main frequency component around

1 kHz is shown in �gure 6.

2.1.5 Flicker

Contrary to the previously mentioned power quality disturbances, the term �icker describes

the e�ect the disturbance can have on speci�c equipment, more precisely lighting systems
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that change in brightness so that it is visible to the human eye. Here, the voltage �uctuates

in a way that causes equipment to be a�ected so that visual disturbances can occur.

However, �ickers are not limited to lighting systems but rather described as a voltage drop

with short �uctuations that may also a�ect other equipment. Flickers are mostly caused

by large arc furnaces, electric motors or reactive power compensators [1]. Figure 7 shows

Figure 7 Simpli�ed model of rapid voltage �uctuations that could cause �icker and associated
FFT. Source: own illustration

the voltage waveform under rapid voltage �uctuations combined with an overall voltage

sag that could cause �icker disturbances.

2.2 Propagation in the network

Power quality disturbances are not limited to the point of occurrence. Instead, they prop-

agate through the network depending on the network topology, impedance and existence

of transformers [7]. Hereby, equipment failures can occur even at nodes further away from

the original point of failure. However, it also allows for estimating and locating the cause

even if no measurement is nearby.

In section 3.1 the propagation of harmonics across delta-wye transformers will be described.

The propagation of voltage sags between the primary and secondary side also depends on

the type of transformer, characterized by its winding connections [8].
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2.3 Monitoring

Power quality measurement devices assess multiple parameters including e�ective values,

harmonics, phasors and waveform tracking. While waveform tracking constitutes only one

component of these measurements, it is the main focus of this work. Here, the monitoring

devices use an envelope at ±10% around the anticipated waveform for fault detection. If

the envelope is breached the monitoring device is capable of saving a fault record to fully

capture the event including the previous time steps for later cause detection and following

time steps to monitor fault recovery. Figure 8 depicts an envelope breach caused by a

voltage sag. As dotted lines, a 10% envelope around the undisturbed sine wave is shown

that is breached multiple times by the disturbed wave.

However, some power quality disturbances may remain unnoticed if the envelope is not

Figure 8 Envelope breach caused by a voltage sag. Source: own illustration

breached. Especially for low measurement penetration in a given grid, faults may remain

unnoticed since the envelope is not breached at the closest monitoring point. Hereby,

critical system states may cause equipment failure without the distribution system operator

noticing and being able to intervene. Therefore, estimating power quality at unmonitored

nodes as accurately as possible is crucial in a safe operation of the power grid.
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3 Technical Foundations

In this section, the technical foundations are described on which the rest of this work is

based on. At �rst, knowledge required to understand power grids is conveyed in section 3.1.

Then, in section 3.2 the goal of state estimation and the di�erences between power �ow

and power quality state estimation are described. Finally, in section 3.4 those concepts of

neural networks are introduced that will be modi�ed in later chapters.

3.1 Power Grids

While the transmission grid is responsible for transmitting electricity through large dis-

tances, generally from large power plants to substations, the distribution grid distributes

electricity to end users. In this work, the focus lies on medium and low voltage distribu-

tion grids that are currently undergoing changes caused by the shift towards decentralized

renewable energy sources and non-linear consumers.

Those distribution grids consist of di�erent types of components. Power lines can either

be installed underground or overhead, consist of di�erent materials and diameters, each

associated with di�erent parameters in terms of resistance, reactance and capacitance. Ad-

ditionally, in AC circuits, two types of connections exist, delta and wye connection. While

in delta connection, the three phases are connected in a triangle with each other, in wye

connection, all three phases are connected together to a neutral wire.

Di�erent types of transformers and connections exist. As seen earlier, third harmonics

are phase aligned and would normally add up. Normally, this would result in the highest

harmonic distortions. Because of that, delta-wye transformers are built in such a way that

third harmonics are caught within the delta loop. In these cases, a short circuit current

runs in the delta loop and ultimately gets converted to heat in the iron core of the trans-

former. This e�ect is shown in �gure 9 with a primary delta winding and secondary wye

winding and the short circuit current marked in red.

Small scale generators such as PV systems and wind turbines are directly connected to

the distribution grid. Residential households and commercial buildings consume power in

a mostly predictable pattern and are thus classi�ed as static loads. On the other hand,

industrial machines show variable consumption patters and are commonly classi�ed as

dynamic loads. Finally, measurement devices capture the power grid system state. In

residential buildings, power consumption is monitored at slow intervals using traditional

meters or nowadays more frequently smart meters. Additional measurement units can be

installed by distribution system operators (DSO) at critical spots that require surveillance

of additional parameters. Phasor measurement units (PMU) o�er synchronized measure-

ments of complex voltage and current phasors with frequent data transmission to DSOs.

While traditionally more prevalent in transmission networks, these units are becoming in-

creasingly relevant and widely deployed in distribution grids.
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Figure 9 Delta-wye transformer with short circuit current for third harmonics shown in red.
Source: adapted from [9]
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3.1.1 Fundamental Laws and Equations

Electrical circuits including power grids can be described through equations and laws that

will be utilized throughout this work. Ohm's law in complex AC circuits, shown in equation

3, describes the relationship between bus voltages V , injected currents I that are related

through the nodal admittance matrix Y .

I = Y · V (3)

Admittance, composed of conductance and susceptance, is the inverse of impedance, a

measurement of resistance and reactance in AC circuits. Harmonic voltage disturbances,

as described in the previous chapter 2.1.2, are caused by nonlinear loads that draw distorted

current waveforms. These non-sinusoidal currents �ow through the network's, i.e. power

lines' or other components', impedance and thus generate harmonic voltages. For non-

fundamental frequencies, Ohm's law also applies with voltages, currents and admittance

calculated individually for the respective harmonic.

Kirchho�'s voltage law (KVL), which states that the sum of all voltages around any closed

loop in a circuit must equal zero, serves as a foundational principle for deriving power

balance equations. These equations establish the interrelations between power injections,

nodal voltages, and the admittance matrix in an electrical network. The power balance

equations are formulated as shown in equations 4 and 5 with Pi and Qi as the real and

reactive power injections at node i, respectively, Vi and θi as the voltage magnitude and

angle at node i, respectively, Yij and αij as the magnitude and angle of the element in the

i-th row and j-th column of the admittance matrix, respectively, and n as the number of

nodes in the system.

Pi − Vi

n∑
j=1

Vj |Yij | cos(θi − θj − αij) = 0 (4)

Qi − Vi

n∑
j=1

Vj |Yij | sin(θi − θj − αij) = 0 (5)

This principle will later be used in related work to con�rm adherence of models to physical

laws.

3.2 State Estimation

State estimation algorithms in power systems aim to achieve multiple objectives including

accurate estimation of the current system state, fault detection, optimal resource utilization

and ensuring safe operation of the power grid. System states of power grids that can

not be fully observed are estimated using various algorithms. Even though this thesis

focuses on power quality analysis, power �ow estimation will be described �rst as it o�ers

well-established algorithms and literature that, with some modi�cation, can be applied

to power quality analysis. Algorithms for state estimation can be coarsely categorized

into model-based, forecasting-aided and data-driven algorithms [10]. Further, model-based

and forecasting-aided state estimation can be divided into node-voltage-based and branch-

current-based estimations depending on the used state vector [10]. An overview of existing
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methods for power �ow state estimation is given in table 3.

Model-based Forecasting-aided Data-driven

weighted least squares Kalman �lters dense neural networks

least absolute value extended Kalman �lters physics-aware neural net-
works

least trimmed squares unscented Kalman �lters physics-informed neural
networks

least median of squares graph neural networks

generalized maximum like-
lihood

Table 3 State estimation algorithms. Adapted from [10]

3.2.1 Power Flow Analysis

In general, traditional model-based power �ow state estimation can be described by a

mapping of measurements z to the state vector x upon which a measurement function h is

called. Then the residuals r that results from subtracting the aforementioned result from

the measurements z are calculated as shown in equation 6 [10].

r = z − h(x) (6)

Afterwards, the residuals are minimized using a minimization or cost function. The di�er-

ence between each of the abovementioned model-based algorithms lies within their respec-

tive cost functions. Notably, traditional model-based state estimations with weighted least

squares (WLS) as the most commonly used algorithm require a fully known state vector. If

measurements are not available for all nodes to build full vector, replacement values which

are either virtual or pseudo measurements are used [11] [12]. For virtual measurements

the voltage drop at a given node and hereby also the load at a speci�c node are assumed

to be zero which is also known as zero-injection [13]. However, for pseudo measurements

historical data is used to �ll in gaps. As one can easily see, these algorithms su�er from

numerical instability in case of lack of measurements. The aforementioned algorithms are

well-suited for transmission system state estimation as transmission systems are usually

well-observed and comprised of few unknowns. For distribution system state estimation

data-driven algorithms are becoming more popular due to their robustness against missing

data and computational speed post-training phase.

3.2.2 Power Quality Analysis

Power quality state estimation can be categorized into fundamental frequency, harmonic,

transient and voltage sag or swell state estimation [14]. Fundamental frequency state

estimation captures the system state at the fundamental frequency as described in the

previous chapter. In harmonic state estimation, the system state at non-fundamental fre-

quencies is estimated using limited available harmonic data, that might be corrupted with

measurement noise. Model-based algorithms also exist for harmonic analysis, however are

restricted by their inability to deal with underdetermined equation systems for equation 6
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[15]. Voltage sag or swell state estimation attempts to estimate voltage dips and swells at

unmonitored nodes from available measurements. Arguably, a voltage sag or swell state

estimation is included in a fundamental frequency state estimation's voltage magnitudes.

Moreover, if the fundamental frequency is added to the harmonic state estimation, a com-

bination of these three state estimations can be performed at once. Thus, in this work,

power quality state estimation will be performed on de�ned harmonics and the fundamen-

tal frequency at once.

Transients, although short-lived, are not entirely elusive in the frequency domain, par-

ticularly when high-frequency measurement devices are employed. At a su�ciently high

sampling rate, the device is capable of capturing transient events e�ectively. Even though

transients are short-lived, they signi�cantly distort the voltage waveform. In cases, a mea-

surement device is installed at the transient source or the propagation is large enough that

an envelope breach is triggered at the next monitored node, GPS-synchronized measure-

ments can be evoked to fully capture the event. However, as explained in section 2.1.4

spectral components of transients vary widely.

Furthermore, variable frequency drives may cause disturbances at switching frequencies

typically in ranges between 1 kHz and 20 kHz and interharmonics may also be signi�cant

[16]. Hence, power quality analysis that focuses only speci�c multiples of the fundamental

frequency in the range of 50Hz to 1 kHz is insu�cient for a full analysis of power quality.

Nevertheless, multiple disturbances are visible in this range and for this work the above-

mentioned range was chosen as a proof of concept and based on availability of harmonic

spectra.

3.3 Open Distribution System Simulator (OpenDSS)

Open Distribution System Simulator (OpenDSS), developed by the Electric Power Re-

search Institute (EPRI), is a simulation tool for electric power distribution systems. It

combines various use cases including harmonic and interharmonic analysis in the frequency

domain which are used in this work. Also, it works with both radial and meshed topologies

for single-phase and multi-phase grids and was hence chosen as simulation framework for

this work [17].

In OpenDSS a network description is represented by scripts that can be saved to and read

from disk. For each grid component, its type, identi�er and key parameters are de�ned

in human-readable text form. Even though this allows easy modi�cation of parameters

by humans, manual recreation of power grids, especially for complicated architectures, is

cumbersome and prone to errors. Hence, in this work a tool was expanded, that automati-

cally converts a network de�ned in pandapower, a power system analysis tool introduced in

[18], to OpenDSS. Previous work built for conversion of a speci�c network was expanded

to a generalized converter application that will be presented in chapter 6.

For harmonic analysis, loads and generators are equipped with harmonic spectra whose

speci�cs will be discussed in section 5.1.2. Then, a power �ow calculation is performed

as initialization for the harmonic analysis. Finally, OpenDSS solves the circuit for all fre-
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quencies present in harmonic spectra or de�ned by the users. For each monitor de�ned in

the OpenDSS script, the associated measured values are saved to a comma separated value

(CSV) �le. Since for each time step and for each monitor a separate CSV �le is generated,

many input-output operations are performed and the required disk space increases. Even

though single generated �les are comparatively small, given the vast amount the �le system

may run out of allocated disk space or out of allocated space for �le identi�ers. Without

modi�cation of the OpenDSS source code, it is unfortunately not possible to de�ne di�erent

more data e�cient �le formats.

3.4 Neural Networks

In this work, multiple custom adaptions to neural networks are implemented. Because of

that, a deep understanding of the mathematical background of feedforward neural networks

is paramount. Figure 10 shows a simple architecture of a multi layer perceptron (MLP)

Figure 10 Simple multi layer perceptron architecture with input (I) hidden (H) and output (O)
layer on the left side and forward pass for a single neuron activation on the right side. Source:
own illustration

that consists of an input layer, a hidden layer and an output layer. The layers are fully

connected with each connection associated with a weight. On the right side, a forward pass

of a single neuron for a feedforward neural network is shown. Here, the output estimation

y0 of the neuron is determined by the input Xi, weights for each connection Wi,j and a bias

b. The weighted sum is calculated by multiplying the input activations xi of the previous

layer with the weights between node i and j as described in equation 7.

sj =
∑
i

xi ·Wi,j (7)

Then, the bias is added and the activation function f is applied to obtain the activations

yj as shown in equation 8.

yj = f(sj + b) (8)
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In section 5.3.1 a custom layer is introduced in which some connections are manually

pruned by altering the weight and input matrix multiplications.

After the forwards pass is complete, the loss function L(y, ŷ) measures the di�erence be-

tween predicted output ŷ and expected output y. In this project, a regression task is tackled

and for that mean absolute error (MAE), mean squared error (MSE) are considered as loss

functions with equations 9 and 10 respectively.

MAE =
1

n

n∑
i=1

|yi − ŷi| (9)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (10)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

Further, many related papers calculate the loss as root mean squared error (RMSE) or

mean absolute percentage error (MAPE) given in equation 11 and 12, respectively. In

section 4.1.3 and 5.3.3 the usage of customized loss functions that incorporate physical

information will be discussed.

After the loss computation, gradients are calculated and propagated in the backward pass.

The internals of the backpropagation algorithm and gradient computation will not be

altered in this thesis, are well-described in literature and thus will not be further elaborated

on here [19].

During each iteration a batch of input data is passed to the network. Larger batch sizes can

result in more stable gradients towards a local minimum at the cost of high memory usage

and increased computational complexity. Due to the high dimensionality of the input data

in this work's use case memory usage will become relevant in future sections.
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4 Related Work

In this section, existing literature on topics regarding this work is reviewed. While section

4.1 describes state-of-the-art models and model architectures for power �ow and power

quality state estimation, section 4.2 reviews literature regarding usage of complex value

representations in neural networks. Finally, in section 4.3 related domains are described

that will not be part of this work, however need to be considered when integrating the

system into a live environment or provide other interesting insights.

4.1 State Estimation Algorithms

While numerous papers exist on power �ow state estimation, few focus on power quality

in distribution grids. Hence, at �rst a few selected papers on power �ow are presented

with innovative approaches that tackle the lack of available measurements or incorporate

physical information.

4.1.1 Model-Based and Forecasting-Aided Algorithms

For model-based algorithms, it is well-known that at least as many variables are known

as unknown variables exist in the system equation 6. In [12] a WLS algorithm was used

to show that under simpli�ed circumstances reasonable results for worst case assumptions

with model-based algorithms can be achieved as long as the ratio of unknown nodes to

measurement nodes is not bigger than 2.5. While for power �ow power consumption mea-

surements may be available through smart meters installed in households, power quality

analysis requires more sophisticated measurement devices that are capable of measuring

harmonics and waveforms for all three phases. Therefore, in this work's use case a much

larger ratio of unknown nodes to measurement nodes is to be expected and model-based

algorithms are no longer feasible.

Forecasting-aided algorithms, comprised of Kalman �lters and their extensions, utilize his-

torical data by performing a weighted average of the predicted state and current measure-

ments. To some degree, this usage of the predicted state enables them to compensate for

missing measurements [10]. While Kalman �lters can solve linear problems, their unscented

and extended variations also solve non-linear problems [20]. However, they also su�er from

system unobservability under severe lack of measurements, especially if measurements are

unavailable for several time instances in a row. Numerous extensions exist for model-based

and forecasting-aided algorithms. Measurements are weighted based on their expected ac-

curacies with observed nodes receiving high weights in contrast to pseudo-measurements.

Physical laws are incorporated by adding constraints to Kalman �lters in [21] and to WLS

in [22] and [23]. This, however, increases the computational complexity even further. Ad-

ditionally, bounds for speci�c variables are used in [12] to incorporate information about

consumers and producers into the equation. However, this poses a problem if the bounds

are falsely set and unexpected system states remain unnoticed due to the ill-conditioned

initialization of the algorithm.
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4.1.2 Data-Driven Algorithms

In [24] a joint topology and power �ow state estimation algorithm is proposed. At �rst,

probability density functions (PDF) of power injections are calculated using historical

smart meter data, which is assumed to be available at all nodes. Then, an approximate

solution to three-phase power �ow through random Monte Carlo (MC) sampling using the

best-�t PDFs is performed. For all samples, the associated topologies are saved and used to

train a DNN for topology identi�cation. Finally, the state estimation DNN is trained using

PMU measurements for the currently sampled topology. If during real-time operation the

identi�ed topology is not consistent with the trained topology, transfer learning is used

to apply the model to the new topology. In the IEEE 34-node system with two installed

PMU using a DNN an MAE of 0.13 for voltage phase and an MAPE of 0.26 for voltage

magnitude was achieved. For the 240-node distribution network of Midwest U.S., with

six installed PMU, an MAE of 0.15 for voltage phase and an MAPE of 0.25 for voltage

magnitude was achieved.

4.1.3 Incorporating Physical Information

Several approaches exist that incorporate physical information into neural networks. In

literature, Physics-Aware Neural Networks (PANN, sometimes PAWNN) and Physics-

Informed Neural Networks (PINN) are described. Even though the nomenclature seems

equivalent, the term PANN is usually used for networks incorporating physical informa-

tion into the neural network topology while PINN utilize physical information in their loss

function [25][26]. The authors of [27] and [28] propose a data-driven model that incorpo-

rates a system state formulation in the model's weights which are determined during the

training phase, therefore calling it 'physics-aware'. More precisely, the pseudo-inverse of

the model matrix which itself is derived from measurements is built and multiplied with

weights. After the training, unknown voltages are computed from known active and reac-

tive power �ow. To compensate for potentially missing measurements a recurrent neural

network (RNN) is used that generates pseudo-measurements for the next time step from

the estimations of the previous one. Skip connections are added to avoid vanishing or

exploding gradients and measurements are corrupted with Gaussian noise with standard

deviation of σ = 0.2 for power �ows and σ = 0.1 for voltage magnitudes. Then, the au-

thors test the hybrid algorithm against the IEEE 57-bus and 118-bus system resulting in

RMSE = 2.97 × 10−4. This approach is not feasible in this work's use case as insu�-

cient measurements are available to fully capture the system state or to create meaningful

pseudo measurements.

In [29] physics-aware neural networks are proposed that incorporate the graph structure

of the neural network in the neural network architecture. Here, the connections between

each of the layers are pruned by multiplying weights with either zero or one based on

adjacency information. To reduce over�tting, the connections are pruned deterministi-

cally before training so that fewer trainable parameters exist. Further, an algorithm for

µ-phasor-measuring units (µPMU) placement is developed, that separates the underlying
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graph structure into compartments. At the locations of separation µPMUs are installed,

and it is shown that the width of each compartment is equivalent to the minimum re-

quired layers in the PANN. Veri�cation of the proposed model is conducted by placing �ve

µPMU in the IEEE-37 bus reference network and measuring the squared L2-norm which

is e�ectively equivalent to MSE. Additionally, seven real-valued measurements of current

magnitudes and 26 complex pseudo measurements are included [29]. For optimal µPMU

placement an MSE of 1.273× 10−3 is achieved which increases signi�cantly for suboptimal

µPMU placement and in case too few layers are used.

The papers [30] and [31] build upon the previously mentioned work [29] by additionally

pruning connections between those nodes that lay in di�erent compartments. Here, train-

ing data for power �ow estimation is generated using OpenDSS for the IEEE 123 bus feeder.

Three scenarios are constructed with di�erent measurement errors and penetration, and

the performance is measured using �average estimation accuracy� [31]. Even though this

term is neither de�ned in the quoted work nor a commonly used term for regression tasks,

it is assumed to be the same de�nition as in [29] which makes it equivalent to MSE. In case

of su�cient measurements with power measurements at 85 and PMUs at 2 of the total

123 nodes, a WLS algorithms, albeit slower, performed better than PANN. However, with

fewer measurements and increased measurement noise, the WLS performed signi�cantly

worse while PANN performance remained similar. Further, the additional pruning did not

improve results.

Physics-informed neural networks were �rst introduced in [25] as a novel approach to inte-

grate the governing physical laws, described by general nonlinear partial di�erential equa-

tions (PDE), directly into the neural network training process. Here, the loss is de�ned as

sum of the model loss and a physics-informed loss that arises from the discrepancy between

the neural network's output and the expected behavior as de�ned by the associated PDE.

The authors of [32] di�erentiate between physics-informed loss function, physics-informed

designs of architecture, which for the context is of this thesis is termed physics-aware, and

physics-informed initialization. According to their de�nition physics-informed initializa-

tion also comprises the initial training of neural networks with simulated data and later

�ne-tuning with measured values from the real world and therefore can be compared to

transfer learning. Overall, the authors utilize a broader de�nition for physics-informed

models that also includes verifying DNN output with physical equations or engineering

input data according to its physical relevance. Additionally, the authors classify graph

neural networks (GNN) as a category of physics-informed neural networks due to their

incorporation of grid structure in the model. They adapt a generalized formulation for

physics-informed loss as a sum of conventional loss, parametric regularization terms and

physical regularization Rphy(X, ŷ) that depends on the physical equations X and the model

output ŷ. In section 5.3.3 several equations are evaluated in regard to their relevance for

this work's use case. The authors' quite recent literature review lists several papers on

power �ow but no paper on power quality. Hence, the application of physics-informed

neural networks to power quality will be �rst described here.

In [33] automatic di�erentiation of the swing equation is used to estimate frequency and



4 Related Work 22

rotor angle of a generator with varying mechanical power. It is shown, that PINN are

e�cient in estimation of target parameters while also being able to derive unknown system

parameters.

Finally, in [34] power �ow is estimated through calculation of the voltage prediction loss of

a neural network and the power injection reconstruction loss. For this, a neural network re-

constructs power injections from solved voltages. Then, the partial derivative of the power

balance equation formed by Kirchho�'s law, described here in equations 4 and 5, with

regard to the voltages is used as joint loss function for the neural networks. Three di�erent

designs are developed for the veri�cation model, an MLP, a bilinear neural network (BNN)

and a BNN with additional topology information through weight multiplication with the

adjacency matrix, akin to PANN. The output of the �rst neural network, that estimates

voltages based on a mixture of partially available power injection, voltage magnitude and

angle measurements is then physically validated in the second model. Additionally, a

Gaussian noise with standard deviation σ = 0.01 is added to simulate measurement errors.

Further, an optimal ratio of prediction loss and physics-informed loss was identi�ed at

10 : 1, therefore valuing the prediction quite strongly. Overall, the model that includes

topology information performs best with an RMSE of 6.27× 10−4 for active power in the

IEEE 57 bus system. However, the authors assumed each bus provides at least two mea-

surement properties out of active and reactive power injections, voltage magnitudes and

voltage angles. Because of that, a well-de�ned power �ow equation with as many unknowns

as measurements is available.

Finally, graph neural networks (GNN) also leverage physical information by making use of

the graph-like structure of power grids. Graphs are usually represented by edges and nodes,

often called vertices. In GNN, nodes are associated with feature vectors that in this work's

case are measured values. In power grids, edges could represent power lines, transformers

and switches, and may as well associated with edge features such as impedance. Then,

messages are passed from one node to another and feature vectors are updated based on the

input to each node. Repeating the message passing step multiple times results in a further

spread of node information. This process is described for power �ow state estimation in

[35].

The authors of [36] develop a generic graph convolutional neural network (GCNN) for

power �ow estimation. In the �rst layer, they only connect the most active inputs to

outputs for which the highest correlation between each other exists. Hereby, adjacency

is estimated, and therefore the approach works without information about grid topology

while also reducing amount of parameters. The pruned layer is followed by several graph

convolutional layers and �nally by another pruned layer. While in their test cases a fully

connected neural network achieved better results for the IEEE 39 bus system, the GCNN

showed better performance in larger grids. Best results were achieved in the Texas grid

system with 1350 loads and an MSE of 0.0244. However, in all cases more inputs were

used than outputs estimated.

The work in [37] generalizes GNN so that even networks of sizes that were not seen during
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training can be estimated with a reasonable e�ciency. For this, the adjacency matrices are

used as input to the GNN along with production and consumption measurements. Then,

the measurements are embedded to the size of a hyperparameter d and the adjacency ma-

trices directly incorporated into the network architecture. Using this method to estimate

power �ow in transmission systems, they achieve a median MSE of 0.0715 between the

20th and 80th percentile for a random topology of a size already seen in training.

In [38] and [39] a GNN model with attention mechanism is proposed for power �ow state

estimation. Whereas [39] only takes PMU measurements into account, [38] also uses legacy

measurements that include active and reactive power �ow and injections and magnitudes

of branch current and bus voltage. A GNN is trained and evaluated once with all measure-

ments available and then with percentages of measurements removed. On the IEEE 30 bus

system with 3 bus voltage PMUs, 8 branch current PMUs and 100 legacy measurements,

an MSE of 1.233 × 10−5 was achieved. Similar results were accomplished for the IEEE

118 bus system as shown in table 4. However, the losses signi�cantly increased with ran-

domly removed measurements. At 60 percent excluded measurements, the MSE loss was

at > 10−3 and > 10−2 in case of the IEEE 118 and the IEEE 30 bus system, respectively.

In [40] the authors expanded the test cases of [38] to networks with more nodes and eval-

uated their performance with regard to amount of training samples. Table 4 shows an

overview of reviewed papers that o�er comparable results. Notably, all presented papers

performed power �ow analysis for distribution systems or in case of [37] for transmission

systems. Nevertheless, comparing di�erent approaches proves di�cult due to di�erences

in chosen grids, amount of measurement nodes, measurement points and lastly di�erent

loss methods. Generally, one can see that low measurement penetration is detrimental to

all algorithms. Moreover, combining di�erent types of measurements such as PMU with

traditional measurements appears to be a standard approach that leverages as much data

as available.

4.2 Complex Neural Networks

Conventional neural networks are designed to work with real numbers in their activation

functions, their loss methods and backpropagation algorithms. Therefore, in most of the

existing work, complex values are split into their real and imaginary component and then

used as real numbers in neural networks. For that, either the input array is expanded

by concatenation or its dimensionality is increased. Several representations for those real-

valued neural networks (RVNN) exist that will be further examined in 5.2.1. However,

multiplying inputs with weights results in an unnecessarily increased complexity for split-

valued neural networks. This can be shown using a fully connected complex-valued neural

networks (CVNN) with two neurons at each layer. For this network, four weights exist

between each layer since the kernel shape is (2, 2). A split-valued neural network requires

four neurons per layer to express the same input and therefore the kernel shape is (4, 4)

resulting in 16 weights. This reduction in the degree of freedom through usage of CVNN

is also described in [42]. Here it is shown, that between RVNN and CVNN the latter are

better at generalization. It is argued that a high degree of freedom, which is the case for



4 Related Work 24

Grid Measurements Algorithm Results Ref.

IEEE 123 2 PMUs, vary-
ing pseudo
measurements

Pruned PANN MSE
3.42× 10−2

[31, Tran 2021]

IEEE 37 5 PMUs, 7
current mea-
surements, 26
pseudo mea-
surements

Partitioned
PANN

MSE
5.33× 10−3

[29, Zamzam
2019]

IEEE 34 2 PMUs DNN MAE 0.13
voltage angle,
MAPE 0.26
voltage magni-
tude

[41, Azimian
2022]

240 node Mid-
west U.S.

6 PMUs DNN MAE 0.15
voltage angle,
MAPE 0.25
voltage magni-
tude

[41, Azimian
2022]

IEEE 57 measurements
at all nodes

PINN RMSE 6.27 ×
10−4

[34, Hu 2021]

IEEE 37 unclear, more
measurements
than outputs

DNN MSE 0.0316 [36, Bolz 2019]

IEEE 37 unclear, more
measurements
than outputs

GCNN MSE 0.1106 [36, Bolz 2019]

Texas 1350
loads

unclear, more
measurements
than outputs

GCNN MSE 0.0244 [36, Bolz 2019]

random topolo-
gies 10-110
nodes

measurements
at all nodes

GNN MSE 0.0715 [37, Donon
2019]

IEEE 30 3 bus voltage
phasors, 8
branch current
phasors, 100
legacy mea-
surements

GNN MSE 1.233 ×
10−5

[38, Kundacina
2022]

IEEE 118 7 bus voltage
phasors, 26
branch current
phasors, 500
legacy mea-
surements

GNN MSE 2.038 ×
10−5

[38, Kundacina
2022]

Table 4 Comparison of existing work on power �ow state estimation under varying conditions.
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RVNN and for networks with many neurons, leads to a larger generalization error. For

neural networks it is a well-known fact that many parameters and a high degree of freedom

can lead to over�tting since the model may be able to memorize the training data.

The authors of [43] review complex valued neural networks (CVNN) that by design work

with complex values through custom activation functions, loss methods and backpropaga-

tion algorithms. Finally, in [44] CVNN are applied to graph convolutional neural networks

and applied to power grid state forecasting, attack detection and localization.

4.3 Related Domains

In this section, several related domains are described that are not part of this work but

need to be considered for later system integration. At �rst, the topology of the underlying

grid is assumed to be known. Either the DSO provides the required information or topol-

ogy estimation algorithms are employed.

Secondly, bad data detection describes the process of identifying �awed data which are

mostly due to measurement errors. Several traditional detection algorithms exist, e.g. in

the chi-square method, but also data-driven methods are nowadays used more commonly

[10].

Furthermore, optimal measurement points need to be identi�ed that capture the system

state as well as possible. Due to the costs of measurement devices and practical limitations

in installation locations, purely statistical algorithms may be insu�cient. For example, the

measurement placement algorithm developed in [29] disregards the issue of transformers

hindering propagation of power quality issues. Thus, the simple separation into com-

partments based on minimizing the distance to measurement units may not be feasible.

Additionally, measurement devices may not be able to installed at the chosen locations if

the cable is underground. However, the algorithm could be modi�ed by adding a condition

that requires at least one measurement unit in each section separated by a transformer

and another condition that limits the selectable placement locations.
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5 Solution Concept

In previous chapters the insu�ciencies of traditional model-based state estimation algo-

rithms were shown. The expected low measurement penetration of the power grid either

causes numerical instability of conventional algorithms or fully causes them to fail. Thus,

this work's solution concept is based on a di�erent set of algorithms, data-driven algo-

rithms that utilize large amounts of data to train a model to predict system states. Since

previous work showed successful approaches involving neural networks, multiple neural

network models will be implemented and compared.

For that, the work�ow can be split into two phases, a model training, including data gen-

eration, and an estimation phase. Figure 11 shows the phases and overall work�ow used

Figure 11 Power quality state estimation work�ow during data generation, training and estima-
tion phase. Source: own illustration

for power quality state estimation. During the �rst phase, harmonic data is generated in

a simulation environment that will be further explained in the following section 5.1.

Then, the generated data is preprocessed so that its distribution is optimal for training of

a neural network. Preprocessing is described in section 5.2. Di�erent models are trained

using the optimized data for all nodes as target and selected measurement points as input.

Section 4.1.3 further showed that incorporating physical information in the neural net-

work's architecture can be bene�cial to its performance. Hence, di�erent architectures are

developed in section 5.3.1 and 5.3.3. Then, the developed models are improved by adding

skip connections in section 5.3.4 and Gaussian Layers to combat measurement noise in

section 5.3.5. Section 5.3.6 discusses methods of reducing model complexity by separating

the grid into compartments and estimating each compartment individually. Finally, the

overall model architecture is presented in section 5.3.7.

The second phase is the estimation phase in which the trained model is used in a live

environment. Here, data is only available for measurement nodes and preprocessed in the
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same way as during training. The normalized estimations are post-processed by inverting

normalization so that voltage estimations for all nodes can be derived.

5.1 Harmonic Simulation

In order to generate power quality data, a harmonic simulation of a power grid is con-

ducted using OpenDSS. As a reference grid the CIGRE low voltage distribution network,

described in [45], was chosen as it contains a residential, a commercial and an industrial

section. In OpenDSS, a digital twin of the underlying power grid is developed with renew-

able generators added in form of photovoltaic systems and monitors attached to each node.

Those monitors capture voltage magnitude and phase angle measurements for prede�ned

frequencies. During training of the neural network, the target data consists of measure-

ments for all nodes while only three nodes are chosen as input data. Those three nodes

will later be referred to as measurement points. The reference grid is shown in �gure 12

with the residential subnetwork on the left, industrial section in the middle and commercial

subnetwork on the right. These subnetworks are operated at 400V line-to-line. On top,

Figure 12 CIGRE low voltage distribution grid divided into three subnetworks with added pho-
tovoltaic (PV) systems, electric vehicle supply equipment (EVSE), loads and power quality mea-
surement points. Adapted from [45]

the medium voltage (MV) distribution network operated at 20 kV connects the individual

sections. Between the MV and LV section delta-wye transformers are installed with a
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primary delta winding at the MV side and a secondary wye winding at the LV side. In the

�gure, selected measurement points are shown in two possible con�gurations a and b at

the most distanced node from the transformer and in the middle of section, respectively.

In red, the longest path within the same subnetwork from any node to the measurement

node in con�guration a, and in green EVSE are marked.

5.1.1 Load and Generator Pro�les

For each simulation step, the load or generator receives its consumed or generated power

from pro�le �les which are read into memory at the program start. The training set is

associated with di�erent pro�les than test and validation sets. Hereby, the generalization

ability of the model shall be tested. Further, this prevents validation or test set samples

that are similar to training set samples which may result in a falsely low prediction error of

the model. While training data was arti�cially generated using the load pro�le generator

described in [46], test and validation set load pro�les are simpli�ed versions of the HTW

Berlin dataset [47]. The dataset consists of a combination of three-phase smart meter

measurements measured over multiple years in 15 minute steps and active and reactive

power measurements sampled every second throughout one week. Then, the authors com-

bine both datasets to obtain high-resolution load pro�les. For this work's use case, the

data was fed to the simulation framework in 1 minute steps and averaged over all phases,

assuming a simpli�ed symmetrical load. Generator pro�les of the test and validation set

are based on collected data of exemplary PV systems, available in [48].

5.1.2 Harmonic Spectra

Harmonic spectra quantify harmonic distortion for each harmonic. In order to simulate

harmonic distortions in power grids, OpenDSS allows loads and generators to be equipped

with harmonic spectra. Here, loads require current spectra and generators can be provided

with either voltage or current spectra [17]. For di�erent types of equipment di�erent spec-

tra should be provided. While industrial loads may show the same or similar spectra over

time, residential household equipment usually is only active for short periods of time and

di�erent equipment is used throughout the day. For example, tea kettles and stoves are

used during the morning and evening, whereas television devices are typically used in the

evening after dinner. Additionally, electric vehicle (EV) chargers in residential areas are

typically used after work while those in commercial areas are used during work time. This

shows the need for time dependent load spectra that o�er a variety of spectra for di�erent

devices.

Due to time constraints, harmonic spectra were only used for inverters at those points with

PV systems and some households and commercial buildings were assumed to be equipped

with EVSE. In this simpli�ed version, all other components were assumed to possess ideal

spectra with no harmonic distortion. For PV inverters a measured spectrum of a 33 kW

inverter at 100% power level was used [49]. The spectra used in simulation are shown in

table 5 and also consist of measured data in case of EVSE. Here, the �rst EV is a 2014

model BMW i3 charged at 240V with 15.5A [50]. The second EV is a 2015 model Nissan
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PV Inverter EV 1 EV 2 EV 3

Harmonic Mag. Angle Mag. Mag. Mag.

1 99.956 76.957 100 100 100
2 0.32606 -94.822 - - -
3 0.45068 33.034 8.4 3.9 9.7
4 0.2183 146.21 - - -
5 1.7971 -178.53 2.1 2 8.8
6 0.038894 118.52 - - -
7 2.2295 101.36 3.6 1.6 4.0
8 0.23969 -101.19 - - -
9 0.12951 -17.256 1.3 0.9 2.7
10 0.16404 86.047 - - -
11 0.23619 72.842 1.2 1.4 4.8
12 0.010896 -124.28 - - -
13 0.08269 53.563 0.4 1.9 4.6
14 0.04204 -113.04 - - -
15 0.016148 5.4987 0.3 0.7 2.7
16 0.033937 78.594 - - -
17 0.017689 -98.512 0.3 0.3 2.1
18 0.0020779 -157.18 - - -
19 0.022024 165.55 0.01 0.2 0.9
20 0.010804 -80.658 - - -

Table 5 Harmonic spectra used in the simulation. Source [49], [50], [51], [52]

Leaf charged at 208V with 16A and the third EV is a 2015 Mercedes B-Class charged at

240V with 15.4A[51][52]. These spectra were applied to selected points in the grid with

the spectrum of the BMW i3, i.e. EV 1, only applied to test and validation set and the

others used solely on the training set. Hereby, the model's generalization ability shall be

tested.

To increase understanding of harmonic spectra voltages and currents up to the 50th har-

monic of power converters were measured in a laboratory setting. Here, three lead batteries

are connected to an inverter and both charged and discharged with various loads. Figure 13

shows harmonic voltages excluding the fundamental frequency of 50Hz. One can see that

uneven harmonics especially those that are not multiples of three make up the majority of

the spectrum. In color, the phase angle in radians is depicted which for multiples of three

is around zero. Notably, the 7th harmonic's phase angle is close to π and for two values

the phase angle exceeds π and thus wraps around to values slightly larger than −π. This

is due to the inability of measurement devices to capture phase wraps as they only ever

see the wave's position between −π and −π. In later sections, especially for the complex

value representation in section 5.2.1, this will become relevant.

Additionally, harmonic currents were measured in the experiment. Figure 14 shows the

measurements for all harmonics including the fundamental frequency. As expected, the

measured e�ective currents increase as the batteries are charged and discharged. Also, one

can see that in the fundamental frequency the phase angle quickly diverges for negative

and positive loads. However, for harmonics this behavior is not as obvious. Finally, in

�gure 15 the measured e�ective values were used to reconstruct sine waves for harmonic
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Figure 13 Measured e�ective values of harmonic voltages phase 1 without �rst harmonic for vari-
ous loads connected to an inverter. Source: own illustration
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Figure 14 E�ective values of harmonic currents phase 1 including �rst harmonic for various loads
connected to an inverter. Source: own illustration
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Figure 15 Reconstructed sine waves phase 1 for various loads connected to an inverter. Source:
own illustration



5 Solution Concept 33

currents. Here, the changing phase angles for various loads is clearly visible. Notably, the

used measurement device captures current angles relative to voltage angles. Therefore, the

change in phase angle for di�erent loads is only visible in currents. All in all, this shows

the necessity for providing spectra for various loads and dependent on time. However, this

signi�cantly increases the simulation complexity and was omitted in this work due to time

constraints.

5.2 Data Preprocessing

In this work, multiple neural network models are compared and evaluated. For all models, a

deep understanding of the underlying data is necessary in order to improve the performance

of arti�cial neural networks.

5.2.1 Complex Value Representation

In alternating current (AC) circuits voltages are measured as complex values for which

several representations exist. Section 4.2 showed that �rst concepts for complex-valued

neural networks (CVNN) exist. However, implementations of these concepts are not yet

widely available. Hence, a RVNN is used in this work in which the complex components are

split into separate features. This section will evaluate the advantages and disadvantages

of each representation.

At �rst, the training data for the neural network in Cartesian form is plotted in a scatter

plot for each frequency. Figure 16 shows one million input data points plotted as scatter

plot for each frequency. On the x-Axis the real part and on the y-Axis the imaginary part

of the complex voltage is plotted. One can see that the data is mostly contiguous and in the

harmonics curved patterns are visible. These curves are caused by the strong physical rela-

tionship between real and imaginary part of a complex number. If in polar representation

the phase angle changes while the magnitude remains equal, in Cartesian representation

both the real part and the imaginary part will change. Forcing neural networks to rebuild

these relationships that o�er no additional information might be unnecessary and hinder

the network in learning more relevant patterns. Therefore, di�erent kinds of complex value

representations were evaluated.

In polar form a simpler linear and even distribution across the plane was observed. How-

ever, phase wrapping becomes an issue where phase values that are slightly bigger than π

loop over to values slightly bigger than −π. In �gure 17 this is visible for 400Hz and in the

input data this phenomenon also occured at 450Hz, 500Hz, 600Hz and 650Hz. This is

problematic for two reasons. For once, values that are logically similar are shown far apart.

Therefore, the neural network might not be able to learn their correlation. Secondly, as

seen in the graphic many values are clustered close to each other while a large section in

the middle is uninhabited. Hereby, di�erences between values that are now put very close

to each other might not be as obvious to the neural network while a lot of space is unused.

Because of this, quantile transform was evaluated as technique to map the problematic

data distribution to a uniform distribution by mapping input values to their corresponding
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Figure 16 One million data points of input data in Cartesian form scattered over real and imagi-
nary part for each frequency. Source: own illustration

Figure 17 Scatter plot of input data showcasing the issue of phase wrapping in polar form.
Source: own illustration
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quantiles in the output which will be further described in section 5.2.2

Instead, the issue of phase wrapping can be circumvented by usage of the exponential form

that puts the phase angle in the exponent of Euler's number as shown in equation 13.

reiϕ (13)

Now, the question arises of how to save the data in exponential form. While saving the

magnitude and phase angle ϕ dicrectly is certainly possible, it then is equivalent to the

polar form in terms of data spread. Further, solving eiϕ and saving the real and imaginary

part along with the magnitude is feasible. However, hereby the dimensionality is increased

and the issue of a strong relationship between real and imaginary part is reintroduced.

Therefore, a partial exponential form is proposed where the magnitude is saved along with

the imaginary part of the solved eiϕ. Saving either the real or imaginary part is su�cient

since the length of the vector eiϕ must be equal to 1 as it is later multiplied with the actual

magnitude r. Nevertheless, the sign of the real part needs to be preserved. Since the

magnitude is always positive, the sign can simply be appended to the magnitude without

the need for introducing additional dimensions.

Furthermore, in �gure 18 an additional problem is visible at 300Hz that exists in both

Figure 18 Scatter plot of input data in polar form showcasing the issue of unmeasurable angles
at third harmonics. Source: own illustration

polar and exponential form. For frequencies that are multiples of three of the fundamental

frequency, clustering behavior can be observed in both polar and exponential form with one

cluster at magnitudes close to zero. Here, the phase angle can not be properly measured

by measurement devices, because values are equal to or close to zero in magnitude. This is

caused by the usage of delta-wye transformers in the OpenDSS simulation grid in which the

delta-connected winding is on the medium voltage side and the wye-connected winding on

the low voltage side. In the reference network 12 the e�ect occurred in the medium voltage

and the industrial section. Even though the industrial grid section is wye-connected, it does

not show any third harmonics, as no harmonic sources such as an inverter was modelled at
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this stage. Figure 19 shows the data distribution in exponential form with the magnitude

Figure 19 Scattered input data in exponential form after moving phase angles for zero magnitude
values. One million data points are shown with magnitude and imag(ejθ) for each frequency.
Source: own illustration

on the x-Axis and imag(ejθ) on the x-Axis. Here, for those third harmonic values where

the magnitude is close to zero the phase angle was manually set to the average of all phase

values in preprocessing. Hereby, the data is more evenly spread while no physically relevant

information is lost as the phase angle has no meaning for magnitudes at or very close to

zero.

5.2.2 Normalization

Even though neural networks can work with data in any range, using di�erent scales for

features results in arti�cial weighting where for those features with smaller values the losses

are underestimated while those with large numerical values disproportionately in�uence the

gradients. Mathematically, this can be seen in the eigenvalues of the hessian matrix which

will also be on dissimilar scales. The hessian matrix is a second-order partial derivative

of the loss function, and its eigenvalues provide information about the convexity of the
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loss function. Generally, a convex loss landscape is preferable [53]. Graphically, the loss

landscape would be stretched along the feature with larger values and thus look elliptical

in contrast to circular for similar scales. Due to the di�erent shape, the gradient will not

always point towards a minimum. Instead, with features on a similar scale weight updates

are consistent across all input dimensions and therefore the gradient descent algorithms

converge more rapidly.

In this work's use case the feature scales di�er widely. While the fundamental frequency

shows voltage magnitudes up to or even above the respective voltage level of the underlying

power grid, harmonics are undesired and typically much smaller.

X ′ =
X −min(X)

max(X)−min(X)
(14)

Equation 14 shows the formula for Min-Max normalization bringing all values in range

[0..1]. Here, X represents the dataset, min(X) and max(X) the minimum and maximum

values in X, respectively. For multidimensional data that is to be normalized along spec-

i�ed axes only, this formula can be generalized by computing the minimum minaxes and

maximum maxaxes along the relevant axes. Additionally, values can be rescaled to an ar-

bitrary range [a..b] by generalizing equation 14 to 15.

X ′ = a+
(X −minaxes(X))(b− a)

maxaxes(X)−minaxes(X)
(15)

Standardization, also commonly referred to as Z-score normalization, scales the data so

that it has a mean µ = 0 and a standard deviation σ = 1. The equation is given in 16.

Xstd =
X − µ

σ
(16)

Here, each feature must be standardized separately to deal with di�erent scales and main-

tain independence. However, even with separate standardization to a mean of 0 and

standard deviation of 1 for each feature, the respective values will still reside in di�erent

ranges.

Lastly, quantile transform redistributes values to follow a uniform probability distribution

and was therefore considered to tackle non-uniform distributions of input data as shown

in the previous section 5.2.1. While in the case of Min-Max scaling, a �xed minimum and

maximum value is computed for each feature in the training set and subsequently used to

normalize the test set, quantile transform is non-linear. In quantile transformation, each

data point is mapped to its percentile rank based on the cumulative distribution function

(CDF) of the training set. This means that when applying the same transformation to

the test set as derived from the training set, one must make an assumption that the test

set follows a similar distribution to the training set. If values in the test set exceed the

maximum values seen during transformation of the training set, the transformation is not

well-described and prone to errors [54].

Even though a uniform probabilistic distribution is desirable, the non-linearity of the trans-
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formation and reliance on speci�c characteristics in the input data make this approach

impractical.

In [55] the technique of batch normalization is introduced in which the layer inputs are

normalized. Contrary to the previously mentioned normalization techniques, the normal-

ization is performed for each batch of training data as part of the model. Initial tests of

batch normalization did not lead to improved results. Hence, min-max normalization was

adopted for this work and a method implemented that normalizes across speci�ed axes.

5.3 Neural Networks for State Estimation

As seen in previous sections, power grid data is often non-linear, and its intricate rela-

tionships can be rather complex. Because of that a model is required that is capable of

handling non-linear data. Additionally, the input data may include measurement noise or

fully missing data points. Arti�cial neural networks are well-suited to these requirements.

In this work several models and architectures are evaluated and techniques for model im-

provement are applied.

A simple dense neural network with fully connected layers will be used as benchmark to

compare more sophisticated architectures against.

5.3.1 Physics-Aware Neural Networks

Con�ning the model to the physics of the underlying power grid can be advantageous in

many regards. For once, the model complexity is reduced through pruning of connections

that represent no physical properties. Secondly, the degree of freedom is reduced which

may improve the model's capability to generalize as discussed earlier. Nevertheless, manual

con�nement also comes with caveats. A model that is too limited in its degree of freedom

may not be able to fully capture the complexity of the problem, resulting in under�tting.

Additionally, the required mathematical operations can be memory intensive especially in

the case of high-dimensional data.

In this thesis, a generalized approach to PANN is implemented that works for all kinds of

grid topologies, for multidimensional input and in case of incomplete input vectors. This

work builds upon the papers previously described in section 4.1.3, especially [29], [30] and

[31].

At �rst, the nodal admittance matrix is calculated for all frequencies based on the pan-

dapower model of the power grid. It contains all grid topology information required for

building PANN.

Figure 20 shows the admittance matrix of the exemplary grid shown in �gure 21. In the

following sections and �gures this grid will function as simple basis for explanations. From

this admittance matrix Y , the adjacency matrix is built using equation 17.

Ai,j =

1 if |Yi,j | > 0,

0 otherwise.
(17)
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Figure 20 Real part of an exemplary admittance matrix at 50Hz in per-unit (pu). Source: own
illustration

N0

N1 N2

N3 N4 N5

10m

30m

20m

15m 25m

Figure 21 Example grid with six nodes and associated line lengths. Source: own illustration
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Starting with a fully connected dense neural network, connections are pruned based on

the adjacency information. This results in the network topology given in �gure 22 if all

nodes of the power grid are input nodes, i.e. if all nodes either provide measurement or

replacement values. Notably, the connections from one neuron to itself will always exist

Figure 22 Neural network with multiple inputs pruned via adjacency in the underlying exam-
ple grid in �gure 21. Nodes in the input, hidden, and output layers are denoted by I, H, and O
respectively. Source: own illustration

unless the node is fully isolated. One can easily see that neurons in hidden layers are only

a�ected by inputs of adjacent nodes in the underlying grid topology. On the other hand,

�gure 23 shows the network topology if only one measurement value exists at node N0. In

this case, in the �rst hidden layer those neurons corresponding to nodes N2, N4 and N5

are not provided with any input at all. Even in the second hidden layer one node without

input remains at node N5. Those nodes without any input are marked as red and connec-

tions from these nodes are marked with dashed lines in �gure 23. Additionally, the longest

required path for all neurons being a�ected by the input is marked in red. By comparing

this path to the grid topology, one can see that the length is equal to the longest distance

between any node and input node N0. From this, we can derive that in PANN at least L

layers are required so that all outputs are a�ected by the input. This can be generalized

into equation 18 where for each node in the set V the minimal distance is found between

itself and a set of measurement nodes nm by the distance function d. Out of all the results,

the maximal value is equal to the required layers.

L = max
v∈V

min
u∈nm

d(v, u) (18)

Pruning neural networks while preserving their capability to capture physical laws poses

a non-trivial challenge due to the opaque nature of hidden layers. Unlike in image clas-

si�cation tasks where the inputs usually consist of raw pixel data and activated neurons
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Figure 23 Neural network with single input pruned via adjacency. Red nodes remain unrespon-
sive to the input, while red arrows delineate the maximal propagation path required for all out-
puts to be in�uenced by the input. Source: own illustration

in deeper layers may correspond to recognized shapes, the mapping between neurons in

hidden layers and the physical characteristics of power grid systems is less straightforward

[56].

During the highly iterative process of model selection and �ne-tuning, pruning is associated

with a lot of e�ort and can be circumvented. Even though by pruning the model size is

reduced and fewer weights need to be trained, these optimizations can be employed after

a suitable model has been identi�ed and tested. Instead, custom layers are developed in

which those weights corresponding to non-existent connections are set to zero.

This approach requires matrix multiplications with altered versions of the admittance ma-

trix. In this work, two di�erent custom layers are implemented, adjacency-pruned layers

and admittance-weighted layers. While adjacency-pruned layers are based on the adjacency

matrix and in a binary fashion multiply weights either by one or by zero, admittance-

weighted layers multiply the weights by the respective admittance. Masked weights M for

adjacency-pruned layers are calculated as shown in equation 19.

Mi,j = Wi,j ·Ai,j (19)

However, in the admittance-weighted layer further factors need to be considered. Firstly,

the absolute value of the admittance matrix is normalized using min-max normalization as

described in equation 14. Then, a logarithmic redistribution of values is applied that brings

the values closer to 1. This approach alleviates the risk of vanishing gradients which might

occur if weights are multiplied by values close to zero. Hence, a direct comparison between a

model trained with a redistribution factor k = 50000 and one model without redistribution

is shown in �gure 24. Here, two models with four consecutive admittance-weighted layers
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were trained once with and once without redistribution of admittance values prior to

multiplication with the weights. Then the gradients of the trained models were extracted

and put into 500 bins showing their respective incidence rate. Under optimal conditions,

gradients should approximate a Gaussian distribution and exhibit minimal variation across

di�erent layers. For both architectures under consideration, it is observed that gradients

receive updates in the �nal layer. However, in the model trained without redistribution,

gradients in all preceding layers progressively approach zero values. This phenomenon

indicates a suboptimal performance in the backpropagation of gradients, commonly referred

to as the vanishing gradients problem. The problem of vanishing gradients may also be

Figure 24 Gradient comparison showcasing vanishing gradients if no redistribution of admittance
values is conducted in admittance-weighted layers. Source: own illustration

averted by usage of skip connections which will be featured in section 5.3.4. All applied

transformations together are described in equation 20 with k as scaling factor and mmn

as min-max normalization.

Y ′
i,j =

0 if Yi,j = 0,

log(1+k×mmn(|Yi,j |))
log(1+k) otherwise

(20)

Then, equation 19 is altered such that the adjacency matrix is replaced by the transformed

admittance matrix like so Mi,j = Wi,j · Y ′
i,j . Finally, the weighted sum sj of output node

j is calculated by altering equation 7 by replacing the weights Wi,j with masked weights

Mi,j as described in equation 21.

sj =
∑
i

xi ·Mi,j (21)

5.3.2 Expansion to multidimensional data

While pruning using weight multiplication may seem as easy as simple matrix multiplica-

tions, it increases in complexity when the multidimensionality of the input is considered.

Each input feature that may have an in�uence on another feature needs to be added to

the latter's weighted sum as depicted in equation 22 in which

� s is the weighted sum,
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� i is the index of the input node,

� j is the index of the output node,

� n1 to nm represent the input features,

� k1 to km represent the output features,

� X is the input activation matrix of the previous layer,

� W is the weight matrix.

sk1,k2,...,km,j =
i∑

i=1

N1∑
n1=1

N2∑
n2=1

· · ·
Nm∑

nm=1

Xn1,n2,...,nm,i ·Wn1,n2,...,nm,i,k1,k2,...,km,j (22)

In this work's use case, for each feature, i.e. voltages for each frequency and complex

component, the connections need to be established if the respective nodes are connected

to each other. Therefore, equation 22 is modi�ed by adding batch index b, using masked

weights M instead of weights W and replacing feature indices as shown in equation 23 with

n1, k1, for frequency and n2, k2 for complex component for input and output respectively.

sb,k1,k2,j =

i∑
i=1

N1∑
n1=1

N2∑
n2=1

Xb,n1,n2,i ·Mn1,n2,i,k1,k2,j (23)

Additionally, due to the altered kernel shape the adjacency or admittance matrix needs

to be further modi�ed so that equation 19 holds. Moreover, if the custom layer is the

�rst layer of the neural network, the input shape may not correspond to the shape of

the admittance matrix in case measurements or replacement values are only available for

selected nodes. Therefore, the known indices K need to be extracted from the admittance

matrix as shown in equation 24.

Y ′
n1,n2,...,nm,i,j = Yn1,n2,...,nm,i,j for i ∈ K (24)

Then, the modi�ed matrix is repeated over m new axes where m is the amount of features

so that its shape corresponds to the kernel shape.

Finally, an integer neuron scaling factor is included that allows for modi�cation of neurons

per layer by adding a dimension of size of the factor to the kernel. The code for equation

23 and 24 is shown in code snippet 1. Notably, each additional feature increase the matrix

complexity and results in additional memory usage.

5.3.3 Physics-Informed Neural Networks

Physics-informed neural networks (PINN) leverage the information contained in equations

describing the system to ensure adherence to physical laws. In section 4.1.3 existing liter-

ature regarding the incorporation of physical information into the neural network training

process was reviewed. In this section, the applicability to power quality state estimation

is discussed.

The generalized formula Rphy(X, ŷ) presented in 4.1.3, however, allows for consideration
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of multiple physical laws. At �rst, Kirchho�'s voltage law is considered.

Vn = Vsource −
n∑

i=1

Vdrop,i (25)

For a path in a radial network of length n KVL can be described as shown in equation 25

where Vsource is the voltage at the source or reference node and Vdrop,i is the voltage drop

across the i-th element in the path from the source to node n. The voltage drop Vdrop,i is

equal to Ii ·Zi, with Ii as the current through the i-th element and Zi as the impedance of

the i-th element in the path. However, this requires either voltage drops or node currents

Ii and impedances to be available as target data during training. Calculating the voltage

drop by subtracting node voltage from source voltage Vdrop,i = Vsource − Vi obviously lets

equation 25 hold true and therefore does not leverage any additional physical properties

or relationships.

Power balance equations 4 and 5 use the same principle and thus also require either voltage

drops or power injections. Therefore, the approach discussed in [34] is not applicable here

without introducing additional parameters. Nevertheless, if calculated separately for each

frequency and taking frequency-dependent impedances into account, PBE are generally

also applicable for power quality analysis. Further, lack of available state variables also

prevents the application of Ohm's law, equation 3, as physical law for PINN. While the

admittance matrix is available, node currents are missing.

Hence, in future work saving additional system state variables solely for the sake of physical

validation may be considered. However, using the known target values available from the

simulation to validate the physical model during training arguably can only result in the

target state as the only possible solution and thus a redundancy of the direct residuals.

All in all, it remains unclear whether a bene�t is provided since the prediction of additional

parameters also introduces uncertainties. Nevertheless, the cost of calculating additional

parameters during simulation is low and therefore, in future work, PINN should be con-

sidered for power quality using PBE or Ohm's law.

5.3.4 Skip Connections

In deep neural networks vanishing and exploding gradients are issues that can occur due to

poor weight initialization, activation function choice or deep model architectures. During

backpropagation, the gradients are updated in such a way that gradients become close

to zero, i.e. 'vanish', or become increasingly large, i.e. 'explode'. For deep architectures

the issue is especially prominent since each layer contributes to the e�ect. Hence, in

[57] the concept of residual networks (ResNet) was introduced. Layers are grouped into

blocks, so-called residual blocks, for which the input is added to the output through a

residual connection. Since this connection essentially skips the layers within the residual

block, it is often called skip connection. As described in section 5.3.1, physics-aware neural

networks require architectures as deep as the maximum distance of any node to the nearest

measurement node. Moreover, manual pruning and weighting contributes to the vanishing
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gradient problem as previously shown in �gure 24. Thus, large power grids especially those

with low measurement penetration or suboptimal placement are prone to the degradation

problem. Further, in [53] it is shown that skip connections improve the convexity of the

loss landscape. Therefore, skip connections were used in this work's architecture.

5.3.5 Measurement Errors and Noise Layers

Phasor measurement units (PMU) that monitor voltage or current magnitude and phase

are an essential part of smart grids due to their ability to accurately capture the system

state synchronized and in short time steps. However, PMU measurements are prone to

errors and inaccuracies caused by internal device components. For those errors, more com-

monly referred to as noise, [58] shows that it follows a Gaussian distribution with zero

mean in a steady state. However, more recent work suggests that real measurement errors

are unlikely to follow a Gaussian distribution [59] [60] [61]. Even though the noise may

follow a non-Gaussian distribution, the authors of [61] suggest that Gaussian distribution

can still be a meaningful choice for error modeling. Additionally, modeling realistic errors

whose relationships are only partially known and described in existing work is di�cult. In

[59] amplitude modulation, phase modulation and frequency ramp tests were performed

for two di�erent types of PMU. The standard deviation in all test cases was σ < 0.01 for

phase angles and σ < 0.005 for magnitudes. Hence, for this work a Gaussian noise with

σ = 0.01 will be used to model errors in the input data. Authors of related work [27]

and [28] as well utilize Gaussian noise with σ = 0.01 in case of voltage magnitudes and

σ = 0.02 for power �ow to simulate measurement errors.

In traditional model-based algorithms like WLS, the weight matrix compensates for mea-

surement noise by providing estimates of the accuracy for each measurement unit. Hereby,

those points with high measurement accuracy are given less freedom than those with low

accuracy. So that the neural network is capable of accurate predictions even in case of

erroneous data, it needs to be trained with added noise as well. Hence, Gaussian noise

layers are added to the network. Adding noise during training is a well-known tactic for

improving a model's generalization capability, often termed �data augmentation�. There-

fore, a standard deviation σ = 0.02 for the Gaussian noise layer in this work's architecture

was chosen. Results without and with measurement noise are presented in section 7.

Moreover, PMUs that shall accurately capture the system state need to be synchronized.

In this project, a time signal is obtained through GPS. However, in case of unavailability

of a signal synchronization errors might become an issue. Additionally, measurement data

needs to be transferred from the measurement device to a centralized entity that com-

bines all measurement data. Delays or communication errors on this path might introduce

further errors that need to be considered in future work but are out of scope for this work.

5.3.6 Separability of Estimation

Especially for large grids, measures for reducing dimensionality of the estimation problem

may be required due to constraints in memory and overall reduced performance. In [29]

an interesting approach to dimensionality reduction is presented. The authors suggest
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partitioning the grid into sections at measurement positions.

However, in the power grid evaluated in this work, shown in �gure 12, the separation

algorithm is not applicable if measurements points are set at the most distanced node

to the transformer as in con�guration a. If instead nodes at intersection points at the

middle of the line are chosen as partition points, the grid can be separated into multiple

parts. While measurement point con�guration b in �gure 12 is optimal to reduce the

path length described in equation 18, the optimal con�guration for partitioning is shown

in �gure 25. In total, the grid is partitioned into �ve sections at intersection points at

Figure 25 Grid partitioning at measurement nodes, marked in blue. Each section can be evalu-
ated separately to reduce estimation dimensionality. Source: own illustration

nodes 5 and 28. Each section would be evaluated individually with the measurement point

remaining in both sections. Then, for each section a neural network is trained. Logically,

most information required to evaluate a single section should be contained in the adjacent

measurement nodes. Nevertheless, further evaluation of this approach is required to ensure

power quality issues spreading from one section to another would be accurately captured.

Likewise, since during training every subnetwork only sees its respective nodes the ability

to capture disturbance sources and the direction of their spreading may be hindered. By

following this approach, the dimensionality of each section's neural network is greatly

reduced. A similar approach with partitions at transformers could prove more useful for
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power quality analysis since certain disturbances are dampened across transformers as

described earlier.

5.3.7 Model Architecture

Taking all aforementioned considerations into account, a network architecture was derived

that is presented in 26. Here, required layers are marked with full lines while optional

Figure 26 Chosen network architecture for dense neural networks (DNN) and physics-aware neu-
ral networks (PANN). Layers with dashed lines are optional. Source: own illustration

layers are marked with dashed lines. In case of DNN the input is immediately �attened

and an optional Gaussian noise layer is added. Then, residual blocks can be repeated

an arbitrary amount of times or be fully left out. Since the �rst dense layer transforms

the input into output shape, any input shape is accepted. Finally, after a mandatory

dense layer, the output is reshaped back to its original multidimensional form and passed

to the output layer. PANN architecture is built similarly, however, �attening the input

is undesired. Instead, the input is passed to the �rst physics-aware layer in its original

multidimensional form since the spatial relationship needs to be preserved. Hence, after

an arbitrary amount of residual blocks and a mandatory physics-aware layer, the output

may need to be reshaped. This is only the case if the output shape di�ers from the input

shape, for example under usage of hybrid complex representations, no precalculations or a

neuron scaling factor other than 1.
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6 Architecture

This chapter describes system requirements and the resulting architecture design choices.

The overall goal was to develop a framework that allows a comparison between di�erent

models, power grids and with various combinations of hyperparameters. The architecture

was developed with considerations for functional and non-functional requirements listed in

the following chapters.

6.1 Functional Requirements

Firstly, data generation shall be available for di�erent power grids and with di�erent load

pro�les and spectra attached. Secondly, in data preprocessing the framework shall clean,

normalize and transform raw data into an optimal format for training and as well be as

agnostic as possible to the underlying power grid. Next, the data shall be split into training,

test and validation set with an option to either use portions of the same generated data

for all sets or read in data generated with di�erent parameters such as harmonic spectra.

This requirement is based on the fact that the digital clone of the power grid will never

perfectly re�ect the grid conditions and parameters. Hence, the model shall be validated

and tested on its generalization ability using real world data or data generated with di�erent

parameters. Consequently, the system shall be capable of supervised training including an

easy way for tuning hyperparameters to optimize the model. Finally, the framework shall

o�er methods for comparable evaluation of di�erent models.

6.2 Non-Functional Requirements

Several non-functional requirements stem from considerations for performance, software

sustainability and limitations of large systems or systems that process big data. In terms

of software sustainability, the framework shall be reusable for di�erent use cases. This

is accomplished through modularity with well-de�ned interfaces, code documentation and

version control. Secondly, model performance is crucial in machine learning projects. Since

time series data for long periods is created, creation must be optimized in terms of perfor-

mance and storage e�ciency. Memory management is critical due to the high dimensional

input data and requirement for deep networks especially in case of PANN. Moreover, the

system shall be scalable to accommodate for grids with more nodes or input dimensionality.

Finally, the framework shall be capable of operating with existing power grid representa-

tions that are used by DSO.

6.3 Implemented Architecture

In the program this work is based on, all tasks were initially performed within the same

module. While this simpli�es usage in a singular use case, reusability for di�erent projects

or even for di�erent input data is hindered. Thus, packages were split at those points,

where a well-de�ned output is produced. In most cases, this output can be saved to disk

and is human-readable. Figure 27 shows an overview over the developed packages. Inputs

and outputs as text �le are shown in green, as CSV �le in orange and object-based in
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Figure 27 Overview of packages, �le-based and object-based inputs and outputs. Source: own
illustration

white. Harmonic spectra require both a CSV �le with rows for each frequency and associ-

ated value and a text �le to associate the spectrum with a speci�c component in OpenDSS.

Since most inputs and outputs of the developed system are �le-based, it is crucial to ensure

all required �les are available and in the correct format as speci�ed in OpenDSS [17] or by

the respective interface. Hence, input validation is performed whenever deemed necessary.

In the module opendss-converter, power grids are converted from pandapower to OpenDSS

scripts. Furthermore, each load and each generator gets assigned with load pro�les and

harmonic spectra. The load pro�les are converted from existing datasets into a common

format in power-pro�le-generator. This package is designed to be expanded in the future

so that load and generator pro�les can be generated according to individual requirements.

The opendss-wrapper module is an optimized and parallelized wrapper around OpenDSS

power �ow and harmonic �ow solver that allows simulation of power grids under usage

of the previously generated scripts, load pro�les and harmonic spectra. Additionally, not

depicted in the overview above, a toolbox package was developed for highly repeated tasks.

This toolbox includes multidimensional scalers, logarithmic distribution methods and spe-

ci�c �le operations including input validations. The class diagram for developed scalers

is shown in �gure 28. Those scalers, implement a common interface with three important

methods. In �t_transform the data is transformed along axes given as parameters and the

normalization parameters are stored in the scaler object. Then, transform method allows

scaling of di�erent data of the same dimensions along the same axes using the previously

saved normalization parameters. Finally, in a revert method, the normalization is reverted

on the given data.

The last module is power-quality-state-estimation in which the simulated data is used as
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Figure 28 Class diagram of multidimensional scalers that scale data along speci�ed axes. Source:
own illustration

training data for di�erent neural network models. Here, custom layers and models for

power quality state estimation using PANN are implemented. A class diagram for custom

models and layers is shown in �gure 29 with some redundant attributes omitted. The

speci�c model, that in all cases always inherits from the parent DNNComplex, is initialized

with a dictionary of hyperparameters and network data. Both are then validated and saved

within the parent class for later usage. In its training method, a callback is used to option-

ally save model weights after every selected amount of epochs. Moreover, saved weights

can be re-used to save training time by providing a path to the weights and instructing the

model to load saved weights. Easy model creation with di�erent layer architectures is sim-

pli�ed by inheriting from the parent class. Because of that it is only required to implement

those methods with custom changes. For example, PANN implements the create_layers

method in which the custom physics-aware layers are called instead of simple dense layers.

As described earlier, a dense layer is added at the end if the architecture requires it due

to di�erent output than input shapes. In contrast, the hybrid PANN adds at least two

hidden layers after an arbitrary amount of physics-aware layers.

In case of PANN, a custom layer needs to be provided. Here, the options are Adjacen-

cyPrunedLayer or AdmittanceWeightedLayer which both inherit from AdmittanceLayer

which itself inherits from Tensor�ow Keras Layer class. These custom layers require addi-

tional parameters including the admittance matrices for each frequency, a threshold in case

of adjacency pruning for cutting of admittance values close to zero and a redistribution fac-

tor in case of admittance weighting. The redistribution factor is equal to k in logarithmic

transform equation 20. Further, the neuron scaling factor is passed to physics-aware layers

so that the matrix multiplications can be adjusted according to the new dimensionality.

Moreover, the known elements, i.e. measurement nodes, are passed to the custom layers.

This allows for selecting the correct nodes from the admittance matrices in the �rst layer
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Figure 29 Simpli�ed class diagram of custom models and layers. For better representation, some
attributes were omitted. Source: own illustration

of the network.

In order to provide an easy way of hyperparameter tuning, hyperparameters are provided

in a dictionary to the model and are automatically used at the appropriate spots. Table 6

gives an overview over the adjustable hyperparameters. Even though the amount of layers

Key Data type Range

batch_size integer [0..∞]

amount_of_layers integer [0..∞]

dropout �oat [0..1]

loss_function string / function

activation string / function

optimizer string 'adam' / 'sgd'

learning_rate �oat [0..1]

neuron_scaling_factor integer [1..∞]

epochs integer [0..∞]

skip_connections boolean

gaussian_noise �oat [0..1]

batch_normalization boolean

callbacks list

Table 6 Hyperparameter data types and ranges

can be set here, additional layers may be added if required, for example due to di�erent

output than input shape. Dropout is only applied in case of DNN since PANN are already

regulated through manual pruning. Further pruning poses the danger of worsening the

vanishing gradient problem due to the sparseness of connections. The parameter callbacks

allows speci�cation of callback methods that are then used in the model training at each

epoch. Here, early stopping and reducing learning rate on plateaus are the most common
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examples.

Additionally, the input data can be customized in a preprocessing step. The possible pa-

rameters are shown in table 7. Here, pre_calculations is an optional preprocessing step in

Key Data type Description

grid_name string folder name of simulated
data

scaler class implementation of dimen-
sional scaler

data_length_in_min integer [0..∞]

step_width_in_min integer < data_length_in_min

pre_calculations boolean

complex_repr string complex representation

test_size �oat [0..1]

validation_size �oat [0..1]

Table 7 Input data parameters and descriptions

which approximate values for all nodes are calculated from the available measured input

nodes using a conventional algorithm. Even though these values are mostly inaccurate,

they simplify network architecture designs by allowing the same input and output shape.

Validation and test size only has an e�ect if the train-test split is done within the model.

Optionally, a separate validation and test set can be provided by saving those sets in ac-

cordingly labeled folders at the same level of the training data.
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7 Results

This section provides results of model performance with regard to di�erent architectures,

measurement point con�gurations and hyperparameters. After an initial grid search, con-

ducted to gain an idea of which hyperparameters and architectures perform best, the

optimal measurement point con�guration is described in section 7.1. Then, section 7.2

shows results for di�erent complex value representations. Subsequently, the model's re-

silience towards measurement noise is tested in section 7.3. Further parameters including

skip connections and precalculations are evaluated in section 7.4 and the distribution of

errors across features is shown. Finally, the application of predicted values to power quality

is described in section 7.5 by providing absolute values in the original scale.

In an initial grid search, it was con�rmed that DNN models with 2 layers perform better

than those with 1, 3, 4 or 6. Moreover, a learning rate around 5 × 10−4 was identi�ed as

best-performing. Because of that, in the following experiments a triangular cyclic learning

rate with a minimum value of 1× 10−5 and a maximum value of 1× 10−4 was chosen. By

cyclically changing the learning rate, the model is capable of jumping out of local minima.

Even though more experiments with di�erent neuron scaling factors could prove useful, it

was always set to either 1 or 2 dependent on complex representation so that the amount

of parameters in the network remains roughly equal. Hereby, models are more comparable

since increased amount of parameters typically allows capturing more complex relation-

ships. Additionally, a �xed batch size of 8192 was chosen based on the maximum available

GPU memory for deep PANN architectures.

7.1 Optimal Measurement Point Con�guration

Table 8 shows a comparison of measurement point con�gurations as described in �gure

12 on model losses for data in Cartesian form over 600 epochs. Even though equation

Con�g. a Con�g. b

DNN PANN DNN PANN

1.3× 10−5 2.9× 10−5 1.4× 10−5 1.9× 10−5

Table 8 MSE validation losses for measurement points at the middle of each section (con�gura-
tion b) and at the most distanced node from the transformer in each section (con�guration a) for
di�erent models.

18 dictates 10 layers for PANN with measurement points in con�guration a, i.e. at the

most distanced node from the transformer in each section, a previous grid search showed

a better performance with only 8 layers. Likely, the fully connected dense layer that is

required due to the di�erent output than input shape at the end, compensates for the

missing layers and thus the model bene�ts from the reduced complexity. One can see that

while DNN perform similarly in both cases, PANN with fewer layers due to optimized

measurement placement in con�guration b perform better with an MSE validation loss of

1.9 × 10−5 than their deep counterpart with a loss of 2.9 × 10−5. PANN with measure-

ment points at the middle of each section require 6 layers as shown in equation 18 and

2 layers were chosen for DNN. In another grid search, it was con�rmed that 6 layers is
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optimal for measurement point con�guration b with 5.9 × 10−6 �nal training loss after

1000 epochs. However, 8 layer and 4 layer architectures performed only slightly worse with

6.1× 10−6 and 6.2× 10−6 �nal training loss respectively. Therefore, con�guration b with

measurement points at the middle of each section was chosen for the following experiments.

7.2 Ideal Complex Representation

DNN PANN

Cartesian Expon. Hybrid Cartesian Expon. Hybrid

1.4× 10−5 2.13× 10−4 1.4× 10−5 1.9× 10−5 2.49× 10−4 1.5× 10−5

Table 9 MSE validation losses for DNN and PANN in di�erent complex representations over
�xed 600 epochs.

Table 9 shows the losses of DNN and PANN for di�erent complex representations over

a �xed amount of 600 epochs. If a hybrid complex representation is chosen in PANN the

amount of neurons is doubled in each layer. So, to remain with comparable amounts of pa-

rameters, the other models' amount of neurons was doubled by setting the neuron scaling

factor to 2. Exponential representation performed signi�cantly worse than Cartesian and

hybrid representation. However, combining exponential with Cartesian in a hybrid rep-

resentation resulted in an improvement in PANN. PANN achieved comparable albeit not

superior results to a simple DNN. However, previous model runs and the abovementioned

grid search had shown that PANN tend to learn more slowly, possibly due to the increased

model complexity. This was con�rmed in two test runs over 1400 and 3000 epochs in hybrid

complex representation, where the minimum MSE loss for PANN signi�cantly improved

to 7 × 10−6 and then 4 × 10−6 while the minimum MSE in case of a DNN only slightly

improved from 1.4× 10−5, also at 1400 epochs, to �nally 1.1× 10−5 after 3000 epochs.

7.3 E�ects of Input Noise and Gaussian Layers

Next, the model's capability of dealing with measurement noise was tested by adding a

noise with σ = 0.01 to the test data. Then, a Gaussian layer with σ = 0.02 was added to

the model input. The results of two runs each performed with the same parameters are

shown in table 10 for PANN trained over 3000 epochs. On accurate input, the loss without

Accurate Input Input Noise

Trial run - GaussianLayer - GaussianLayer

1 5.45× 10−6 6.52× 10−6 8.58× 10−6 8.04× 10−6

2 5.75× 10−6 6.48× 10−6 8.93× 10−6 8.06× 10−6

Table 10 Minimum MSE loss on the validation set with and without input noise and Gaussian
layer with σ = 0.02 in two trial runs of physics-aware neural network models trained over 3000
epochs.

Gaussian layers was lower which may be caused by the introduction of uncertainties to
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the network. However, Gaussian layers improved the model's capability of dealing with

Gaussian noise on the test data as can be seen by the lower loss in the rightmost column

in table 10. Figure 30 shows the training and validation loss for PANN with and without

(a) Training and validation loss of PANN (b) Training and validation loss of PANN with
Gaussian Layer σ = 0.02

Figure 30 Comparison of training and validation loss of a physics-aware neural network (PANN)
model with and without Gaussian layer. Source: own illustration

Gaussian Layers. Temporary spikes in the loss curve are caused by the triangular cyclic

learning rate. One can see that for the model trained without Gaussian layers, the training

loss decreases at the same rate as the validation loss, eventually even falling below. This

might be a �rst indication of model over�tting. On the other hand, the training loss of the

model trained with Gaussian layers decreases more slowly than the validation loss. This

indicates the model's capability of generalizing from the training data.

7.4 Further Parameters and Error Distribution

The cumulative distribution function (CDF) of mean absolute errors, as shown in equation

9, for normalized data for di�erent models is shown in �gure 31. In the plot, the CDF

at a given error x quanti�es the fraction of data points with an error value less than or

equal to x. A CDF curve that rises steeply towards 1 is desirable, as it indicates that the

majority of errors are of small magnitude. If the curve extends signi�cantly to the right

on the x-axis, it suggests the existence of outliers with larger errors, which is typically not

desirable.

In �gure 31(a) a comparison between a DNN and a PANN model was conducted. Here,

the DNN model was con�gured with a dropout value of 0.02 in each layer, which proved

as a successful regularization mechanism to prevent the frequent occurrence of exploding

gradients. Throughout multiple test runs, exploding gradients only occurred for DNN

models, especially those with deep architectures, and for PANN models with precalcula-

tions. Potentially, the sparseness of input data and the pruning of connections functions

as an e�ective regularization technique. In future work, additional regularization mecha-

nisms such as gradient clipping, L2 or L1 regularization can be tested and compared to

the existing models. Nevertheless, DNN exhibits a higher probability of bigger errors on
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(a) Model (b) Skip connections

(c) Gaussian layers and input noise (d) Precalculations

Figure 31 Cumulative distribution function (CDF) of MAE of normalized data for di�erent mod-
els. Source: own illustration
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the test set than the PANN model.

On the other hand, �gure 31(b) shows a more desirable curve if skip connections are ap-

plied to the model. Likewise, the minimum validation loss of PANN with skip connections

was at 4×10−6 while without skip connections a minimum validation loss of only 8×10−6

was achieved.

In 31(c) di�erent models were evaluated with and without input noise and with and without

Gaussian layers. Expectedly, for input data without noise the probability of small errors

is higher than for input data with noise. The probability of higher errors increases when

Gaussian layers are added to the model without input noise on the test set. Conversely, it

decreases when Gaussian layers are incorporated along with noise on the data.

Finally, �gure 31(d) shows the evaluation of the e�ect of precalculations, described at the

end of section 6.3, on the input data. One can see that the model performs worse with

precalculations of the input data. Even though in that case inputs are available even for

nodes without measurements, those inputs are inaccurate. A minimum validation loss of

6× 10−6 was achieved compared to 4× 10−6 for a model without precalculations.

Overall, one can see that across the whole test set the probability of MAEs below 0.002 is

greater than 80% for the best-performing models.

Figure 32 shows a heatmap of the MAE over frequencies and nodes in the grid for normal-

Figure 32 Heatmap of MAE for normalized data in a physics-aware neural network. The y-axis
shows nodes in the power grid and the x-axis shows frequencies in Hertz. Source: own illustra-
tion

ized data. The upper plot shows the real part of complex values while the lower plot shows
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the imaginary part. Due to the separate min-max normalization for each input feature, the

network is incentivized to minimize the error for each frequency and node independently of

the value ranges. Nevertheless, those nodes that are distant to measurement points remain

more di�cult to estimate. This is particularly visible for nodes 33 to 37 that lie in the

commercial subnetwork.

Moreover, those frequencies where di�erent harmonics are injected in the train and valida-

tion set especially challenge the model's generalization ability. As shown in section 5.1.2,

in this work, only uneven harmonic spectra at those nodes with EVSE were altered and

thus the highest errors are also visible there. This issue becomes even more visible when

looking at the maximum absolute error in the normalized data for each frequency and node

as shown in �gure 33. Here, the highest error occurs at the 13-th harmonic at node 37 that

Figure 33 Heatmap of maximum absolute error of each node and frequency (in Hertz). Normal-
ized data for physics-aware neural network model. Source: own illustration

is equipped with an EVSE load. Looking at the harmonic spectrum table 5 reveals that

the di�erence between those values used in the respective sets is particularly high for the

13-th harmonic with a magnitude of 0.4 on the test and validation set and magnitude 1.9

or 4.6 on the training set. This underscores the necessity for usage of harmonic spectra in

the simulation that accurately represent the real world conditions.

7.5 Application of Predicted Values to Power Quality

Plots utilizing normalized data such as �gures 32 and 33 show the error relative to the

respective minimum and maximum value for each feature. Hereby, one gains insight into
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the approximation and generalization ability of the neural network. However, it is also

important to take a look at values in their original scale. In table 2 the maximum allowed

voltage distortions relative to the RMS value of the fundamental frequency were shown for

each harmonic. Power quality state estimation should be able to estimate values precisely

enough that limit violations are recognized and false positives avoided. To visualize values

(a) MAE (b) MAE harmonics

(c) Maximum absolute error (d) Maximum absolute error harmonics

(e) Maximum absolute error relative to RMS
voltage at 50Hz (in%)

Figure 34 Mean absolute error (MAE) and maximum absolute error of magnitudes after revert-
ing normalization. Source: own illustration

on their original scale, min-max normalization is reverted and the magnitude errors are

plotted in �gure 34. Notably, all input data is still scaled to the nominal voltage level

of the medium voltage section, 20 kV. This was necessary to simplify the admittance

matrix of a network that possesses nodes in di�erent voltage levels. Hence, line-to-neutral
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voltage magnitudes at the fundamental frequency reside around 20 kV×
√
3 ≈11.547 kV

RMS value. In the appendix, a comparison of actual and predicted values at node 37 for

a randomly selected time step is shown in table 11 allowing a �rst insight into the scale of

values.

Figure 34(a) shows the magnitude MAE over all frequencies and nodes. Expectedly, the

error is largest for the fundamental frequency with the highest MAE at 25.352V at node

36. Due to the vastly di�erent scales, a plot excluding the fundamental frequency and

instead only showing harmonics is depicted in �gure 34(b). Here, the highest MAE occurs

at node 37, a node with an EVSE load, at frequencies 250Hz, 550Hz and 650Hz with

values 0.5563V, 0.5536V and 0.556V, respectively.

In �gure 34(c) the overall maximum absolute error on the test set is shown for each feature.

Here, the maximum error at the fundamental frequency amounts to 161.5V or 1.4% of the

RMS value and can be found at node 35, that is equipped with a PV system. For harmonics,

shown in �gure 34(d), the maximum absolute error once again occurs at node 37 at 650Hz

with a magnitude of 12.94V or 0.11% of the RMS value of the fundamental frequency.

Table 2 had shown that for the 13-th harmonic a relative amplitude distortion of 3% is

within the permitted limits. Finally, �gure 34(e) shows the maximum error as percentage

of the RMS voltage for each feature. However, this should also be evaluated relative to

the absolute maximum values in the test set. For the 13-th harmonic this amounts to

75.35V or 0.65% of the RMS voltage at the fundamental frequency. Nevertheless, one

can see that the state estimation algorithm developed in this work consistently achieves

estimation accuracies in di�erent orders than the allowed deviations.
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8 Summary

The purpose of this study was to explore the capabilities and limitations of physics-aware

neural networks (PANN) in the context of power quality state estimation. The results high-

light the advantages of PANN over traditional dense neural networks (DNN) and showcase

solutions to challenges introduced by increased model complexity. PANN o�er advantages

by harnessing additional information contained in the physical structure of the power grid

and incorporating it into the network architecture. While models with fully connected

layers can pass messages to any node, PANN only pass messages to nodes adjacent in the

underlying power grid which serves as an e�ective regularization mechanism.

For prede�ned frequencies, the neural network models were trained to estimate complex

voltages of all nodes in a grid based on a sparse input with only three nodes as measure-

ment points. Figure 35 shows estimations at 650Hz of a DNN and a PANN model for a

Figure 35 Harmonic predictions at 650Hz for a randomly chosen iteration. Harmonics are pre-
dicted in the same fashion as the fundamental frequency with physics-aware neural networks
(PANN) showing a higher accuracy than dense neural networks (DNN). Source: own illustration

randomly chosen time step.

For complex values, various representations were evaluated with a hybrid form slightly out-

performing a standard Cartesian form with an MSE validation loss of 1.5×10−5 compared

to 1.9× 10−5 after �xed 600 epochs.

Even though PANN su�er from increased model complexity, e�ective ways of mitigating

issues caused by deep architectures and sparse connections were shown. Partly, the dis-

advantages can be compensated for by sophisticated algorithms for measurement point

selection and by intelligent design of neural network models, especially through skip con-

nections. Here, it was shown that measurement points are optimally positioned in the

middle of a grid section. Hereby, fewer layers are required in PANN resulting in a smaller
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MSE loss of 1.9× 10−5 over 600 epochs compared to 2.9× 10−5 for suboptimal placement.

Further, it was shown that the model is fairly resilient towards input noise caused by

measurement inaccuracies with an average minimum MSE loss of 8.8 × 10−6 compared

to 5.6 × 10−6 with no input noise over two runs with 3000 epochs. Figure 36 shows the

predictions of PANN and DNN at the fundamental frequency for a randomly chosen time

step. Even with signi�cant noise added to input values, the PANN model is able to predict

actual values accurately. Adding Gaussian layers not only improved the model's capability

Figure 36 Predictions for a single randomly chosen iteration of the test set at 50Hz. Physics-
aware neural networks (PANN) and dense neural networks (DNN) predict values for all nodes
based on inputs at three nodes with added measurement noise. Source: own illustration

to deal with input noise, resulting in an average minimum MSE loss of 8.05 × 10−6 over

two runs, but also enhanced its generalization ability.

Even though computational complexity of PANN is higher, their overall performance ex-

ceeds that of DNN by a signi�cant margin with a minimum validation MSE loss of 4×10−6

compared to 1.1× 10−5 over 3000 epochs.

8.1 Outlook

This work opens multiple avenues for future research in power quality analysis using neu-

ral networks. Firstly, the simulation used to generate training data can be improved by

increasing variance of the generated data so that more possible system states are covered.

Here, time- and load-dependent spectra and more diversi�ed load pro�les with di�erent

loads for each phase are especially promising. Secondly, adding more features to the neural

network can be considered. Demographic data of occupants, such as age and occupation

give an insight into their power consumption patterns. Weather information can be used

to better estimate power generation based on solar energy and energy consumption for
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heating purposes.

Subsequently, time series data or data associated with time stamps may further help show

intricate relationships that are time-dependent. This could be supported by implement-

ing Long Short-Term Memory (LSTM) networks that are designed to capture long-range

dependencies in input data. Additionally, complex valued neural networks that deal with

the high correlation of values in split complex representations provide a promising avenue.

Aside from implementing additional models, the existing models can be further improved.

Here, implementing physical laws in physics-informed neural networks o�ers further con-

straints on the neural network that help guide its output towards physically possible states.

The increased complexity in PANN can be tackled in various ways. First, pruning connec-

tions instead of multiplying weights helps reduce amount of trainable parameters, however,

is a highly complex task. Furthermore, estimating only those frequencies and nodes where

breaches of limits are to be expected helps reduce the dimensionality and input size. Here,

critical nodes and frequencies can be identi�ed individually for each grid based on in-

stalled loads and generators. Moreover, principal component analysis helps break down

highly dimensional input but is not applicable to PANN since those require preserving the

dimensionality for connection pruning. Partitioning the power grid into individual sections

as proposed in section 5.3.6 also helps reduce dimensionality albeit requiring development

of neural networks for each section.

Due to time and model complexity constraints this work focussed on harmonics in the

range of 50Hz to 1 kHz. To fully capture all power quality disturbances a broader range

also including inter-, super- and subharmonics should be considered.

Finally, whereas during this work simulation data was used for model evaluation, the model

performance must be evaluated in a real-life scenario using measured values, once available.

8.2 Conclusion

This work has successfully demonstrated the e�cacy of a physics-aware neural network

prototype for power quality state estimation. Notably, PANN models have been shown to

outperform their conventional fully connected neural network counterparts with a minimum

validation MSE loss of 4×10−6 compared to 1.1×10−5. Detailed analyses were conducted

to examine the impacts of measurement point selection, input preprocessing, architec-

tural considerations, and hyperparameter selection on the model performance, particularly

considering the complex nature of power quality data. Moreover, methods for the integra-

tion of physical information into neural network models were critically assessed for their

applicability in power quality state estimation. The results a�rm that neural networks

incorporating physical information constitute an e�ective approach for state estimation in

power quality analysis.
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Appendix VII

Appendix

Code Snippet 1 Preparation of admittance matrices for PANN

1 import numpy as np

2 def prepare_admittance_matrices(admittance_matrices ,

known_bus_indices):

3 """

4 Modify the given admittance matrices based on known bus

indices. Extend dimensions and compute the absolute

value of elements.

5 :param admittance_matrices: Array of admittance matrices

per frequency and complex component.

6 :param known_bus_indices: Indices of buses with known

elements (e.g., measurement buses).

7 None if inputs for all nodes are available.

8 :return Array of modified admittance matrices.

9 """

10 # Extract elements corresponding to known bus indices from

the original admittance matrices.

11 if known_bus_indices is not None:

12 pruned_admittance_matrices = admittance_matrices [:, :,

known_bus_indices , :]

13 else:

14 pruned_admittance_matrices = admittance_matrices

15

16 # Compute the absolute value of the pruned admittance

matrices.

17 abs_admittance_matrices =

np.abs(pruned_admittance_matrices)

18

19 # Extend the dimensions of the absolute value matrices to

fit kernel shape

20 extended_dimensions = abs_admittance_matrices [:, :, :, :,

np.newaxis , np.newaxis]

21

22 # Repeat the extended matrix along the newly added

dimensions.

23 tiled_matrices = np.tile(extended_dimensions ,

24 (1, 1, 1, 1,

25 abs_admittance_matrices.shape[0],

26 abs_admittance_matrices.shape [1]))

27

28 # Reorder the dimensions to obtain the final result.

29 reordered_matrices = np.transpose(tiled_matrices , (0, 1,

2, 4, 5, 3))

30

31 return reordered_matrices



Appendix VIII

Harmonic Actual Predicted

1 11054.8 11055.8820125668

2 0.413326 0.410686680708806

3 28.45515 29.2180298464032

4 0.498088 0.500611968886191

5 38.3808 39.6027188250123

6 0.131465 0.131788541629096

7 29.0194 29.7383663731357

8 1.054265 1.06041234297184

9 21.34695 21.919773254299

10 0.894305 0.899097252778349

11 46.34915 47.6234288221109

12 0.0689875 0.0682768737938953

13 52.2995 53.8263010557241

14 0.3159585 0.316605248770766

15 32.5914 33.5480388193729

16 0.2891325 0.29052842086897

17 29.05805 29.8672324524794

18 0.0186696 0.0186430476394765

19 13.9893 14.4323291840178

20 0.113021 0.112392585744883

Table 11 Actual and predicted values for node 37 of a randomly selected single iteration of the
test set, predicted using a PANN model.
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