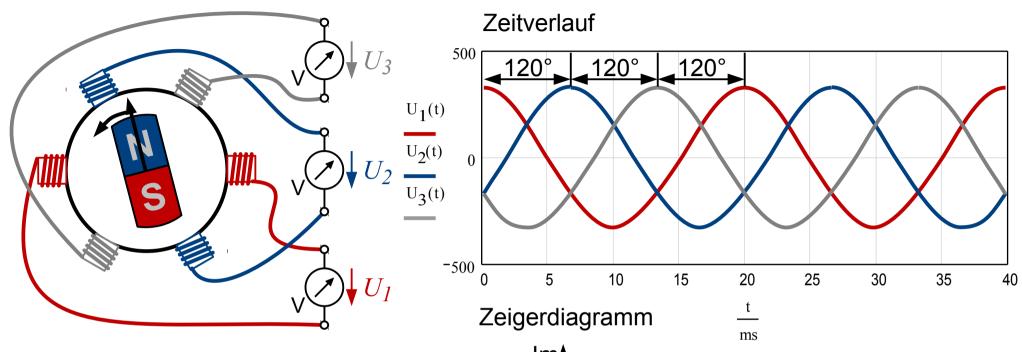


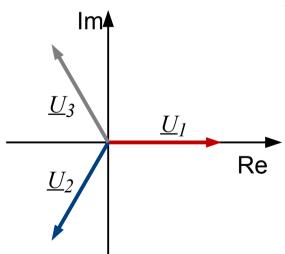
Grundlagen der Elektrotechnik

Drehstrom Grundlagen

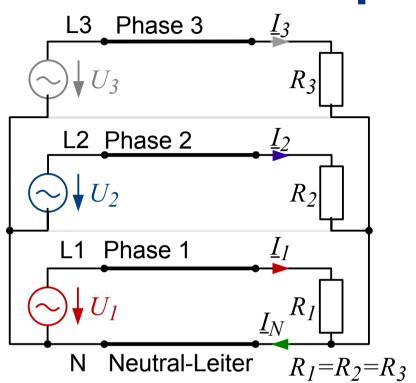

TH-Köln 2020

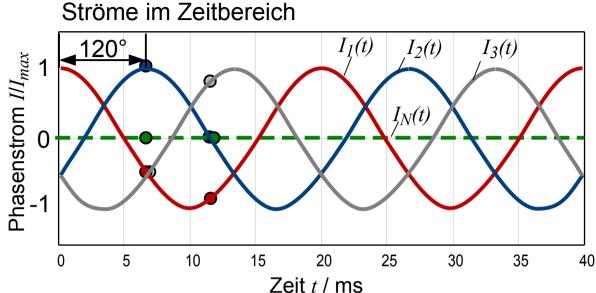
Prof. Dr. Eberhard Waffenschmidt

Drehstrom Grundlagen


- Was ist Drehstrom?
- Stromkompensation
- Spannungen im Drehstromsystem
- Leistungen

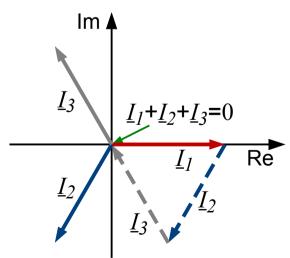
Drehstrom-Generator



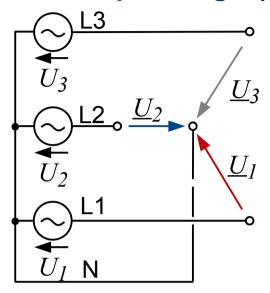

Magnet dreht sich:

Magnetfeld induziert
Spannungen
in den Wicklungen

Stromkompensation im Nulleiter

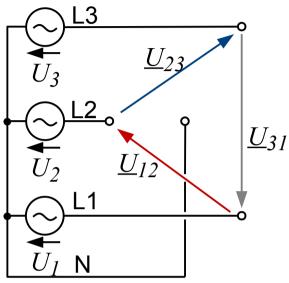


Bei symmetrischer Belastung:


- Ströme kompensieren sich im Null-Leiter: $I_N = 0$
- Null-Leiter kann weggelassen werden!

Ströme im Zeigerdiagramm

Spannungen im Drehstromsystem


Stern-Spannung U_{Y}

 \underline{U}_1 , \underline{U}_2 , \underline{U}_3 :

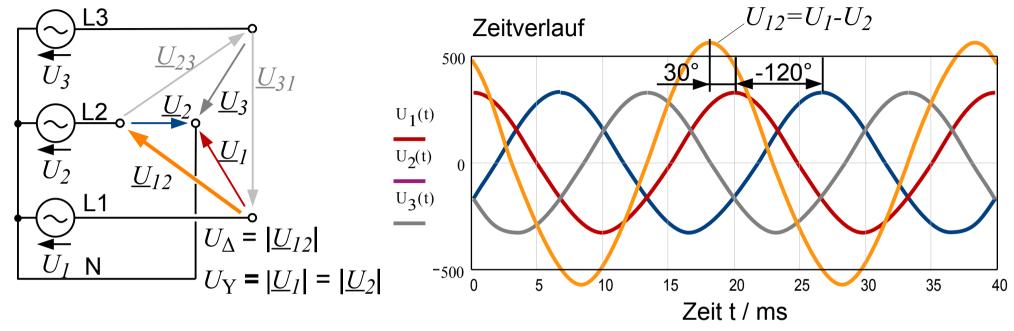
Phasenspannungen = Leiter-Erd-Spannungen

Dreiecks-Spannung U_{Δ}

 \underline{U}_{12} , \underline{U}_{23} , \underline{U}_{31} :

Außenleiter-Spannungen = Verkette-Spannungen

Bei Symmetrie:

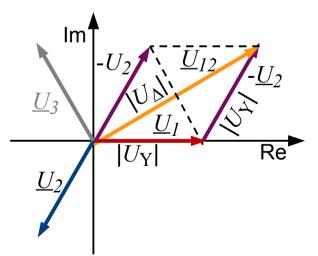

$$U_{Y} = |\underline{U}_{1}| = |\underline{U}_{2}| = |\underline{U}_{3}|$$

$$U_{\Delta} = U_{D} = |\underline{U}_{12}| = |\underline{U}_{23}| = |\underline{U}_{31}|$$

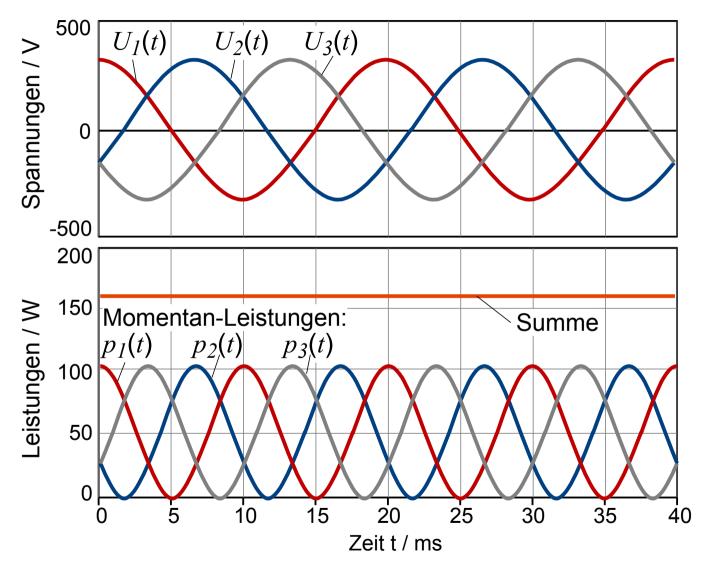
 U_{Δ} ist **Nennspannung** U_N von Stromnetzen!

Zeigerdiagramm der Spannungen

Wie groß ist die Spannung zwischen zwei Phasen?

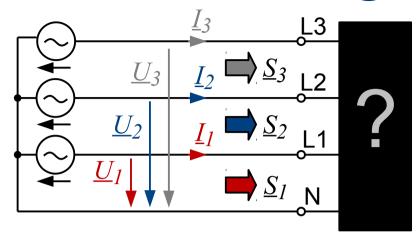

Länge des Zeigers U_{12} :

= 2 x Höhe eines gleichseitigen Dreiecks = $2 \cdot \frac{\sqrt{3}}{2} \cdot U_Y$ mit Kantenlänge $U_{\rm Y}$ (=| \underline{U}_1 |, | \underline{U}_2 |)


$$U_{\Delta} = \sqrt{3} \cdot U_{Y}$$
 Unbedingt
$$\sqrt{3} = 1,73...$$
 Merken!

$$U_Y = \frac{U_{\Delta}}{\sqrt{3}}$$

$$1/\sqrt{3} = 0,577...$$



Leistung von symmetrischem Drehstrom

- Die Gesamtleistung im symmetrischen Drehstromsystem ist zeitlich konstant
- Kein Rippel!
- Wichtig für:
- KonstantesDrehmoment ohneRippel
- Verzicht auf Elkos in Leistungselektronik, z.B. PV-Wechselrichter

Leistung von Drehstrom

$$\underline{S}_3 = \underline{U}_3 \cdot \underline{I}_3 *$$

$$\underline{S_2} = \underline{U_2} \cdot \underline{I_2}^*$$

$$\underline{S}_{I} = \underline{U}_{I} \cdot \underline{I}_{I}^{*}$$

Phasenspannungen:

Allgemein:

$$\underline{S} \neq \underline{U}_1 \underline{I}_1^* + \underline{U}_2 \cdot \underline{I}_2^* + \underline{U}_3 \cdot \underline{I}_3^*$$

bei Symmetrie:

$$\underline{S} = 3 \cdot \underline{U}_{Y} \cdot \underline{I}_{Y}^{*}$$

Verkettete Spannungen:

Allgemein:

$$\underline{S} = \underbrace{\frac{U_{12}}{\sqrt{3}}} \cdot \underline{I}_{1}^{*} + \underbrace{\frac{U_{23}}{\sqrt{3}}} \cdot \underline{I}_{2}^{*} + \underbrace{\frac{U_{31}}{\sqrt{3}}} \cdot \underline{I}_{3}^{*} \quad \underline{S} = \underbrace{3 \cdot \underbrace{U_{N}}{\sqrt{3}}}$$

bei Symmetrie:

$$\underline{S} = 3 \cdot \underbrace{U_N}_{\sqrt{3}} \cdot \underline{I}_Y^* = > \underbrace{\underline{S} = \sqrt{3} \cdot \underline{U}_N \cdot \underline{I}_Y^*}_{N}$$

Eigenschaften von Drehstrom

Vorteile:

- Drehfeld für Motoren
- Stromkompensation im Neutralleiter:
 - Halber Aufwand Leitermaterial oder
 - doppelte Leistung
- Konstante Leistung (kein Rippel)

Nachteile:

Dreifacher Aufwand Isolation, Schalter usw.

Kontakt

Prof. Dr. Eberhard Waffenschmidt Professur Elektrische Netze Institut für Elektrische Energietechnik, Fakultät für Informations-, Medien- und Elektrotechnik (F07) Technische Hochschule Köln Betzdorferstraße 2, Raum ZO 9-19 50679 Köln, Deutschland Tel. +49 221 8275 2020 eberhard.waffenschmidt@th-koeln.de https://www.th-koeln.de/ personen/eberhard.waffenschmidt/

